双円筒ヒーターからのパルス状発熱を利用した熱特性測定 プローブについて

A Twin-cylinder Heat-pulse Probe to Measure Thermal Characteristics

○原 道宏^{*}, 室谷朝子^{*+}

OMichihiro Hara^{*}, Tomoko Muroya^{*+}

*岩手大学,*現、福島県

^{*}Iwate University, ⁺Presently Fukushima Prefecture

- キーワード: ヒートプローブ(heat probe), ピーク値法(peak value method), 最急勾配法 (steepest gradient method), 体積熱容量(volumetric heat capacity), 土壌水分測定 (mesurement of soil water content)
 - 連絡先: 〒020 盛岡市上田3-18-8 岩手大学 農学部 農林生産学科 生産環境学講座 農業環境制御工学研究室 原 道 宏, Tel.0196-21-6125, Fax.0196-21-6125, Email: mrhara@msv.cc.iwate-u.ac.jp

1. はじめに

熱特性のうち、熱伝導率を測定するプ ローブ型センサーは開発が進んでいるが ¹⁻⁵⁾、物体の体積熱容量は、通常、サン プルを測定室に持ち帰って測定しており ⁵⁾、体積熱容量および温度伝導率を測定 するプローブ型センサーの開発は遅れて 始まった⁶⁻¹¹⁾。

体積熱容量が現場でプローブで測定で きれば、その恩恵は大きい。その一例は 土壌水分の推定である。固相成分が変化 しない状態で体積熱容量の変化が知れれ ば、単位体積土壌中の水分量の変化を知 ることができる。それは、体積熱容量の 変化が単位体積土壌中の水分量の変化に 比例するからである。しかも、その比例 係数は水の比熱であるので、よく知られ た値であり、較正の手間が省ける。

体積熱容量を測定できるプローブ型セ ンサー⁶⁻¹¹⁾は最近になって開発が始めら れたが、その基礎となる理論はヒーター の太さが無限小など、理想化された条件 に対するものであり、実状に合う理論の 開発が遅れている。また、そのためヒー ターの太さや長さをそのような理想的条 件に合わせようとするため、ヒーター温 度が過度に高温になるなど好ましくない 状況を生じている。

本研究の目的は、従来の理想的条件に対 する理論をより実状に合うように拡張し、 土壌や生体など農業分野において用いるこ とのできるプローブ型熱特性センサーを開 発すること、また、それを水分量などの組 成測定に応用することである。

2. 理想条件に対する測定理論

温度が一定で無限の広がりを持つ等方性 均質物体内の1点(以下、熱源)で瞬時に 一定熱量(Q_m)を発生し、熱源から距離r₀ だけ離れた位置で温度を測定すると、温度 は初めほとんど変化がなく、しばらくして から徐々に温度上昇してピークに達し、そ の後は温度が下降し、初期温度に収束する。 初めの温度からの温度上昇をf_mとすれば、 それは式(1)のように書ける。点熱源ではm は3である。

このことは、熱源となる点が物体中に任 意に分布している場合であっても同様であ り、その効果は各点熱源からの効果の和で 表される。特に、熱源が直線である場合に はその結果はやはり式(1)で書き表される が、mは2、 r_0 は熱源直線から温度測定点ま での距離、 Q_m は熱源単位長さ当たりの発 生熱量である。熱源が平面である場合も結 果はやはり式(1)で書き表され、mは1、 r_0 は熱源平面から温度測定点までの距離、 Q_m は熱源単位面積当たりの発生熱量であ る。

このように、熱源形状が点(m=3)、 直線(m=2)、または、平面(m=1)の 場合には、上述の関係は次のように表され る。

$$f_m = (Q_m/C_0) (4 \pi D_0 t)^{-m/2} \exp(-r_0^2/4D_0 t)$$
 (1)

$$f_{m.peak} = (m/2 \pi e)^{m/2} (Q_m / C_0 r_0^m)$$
(2)

$$t_{m.peak} = r_0^2 / 2mD_0$$
 (3)

 $f_{m.peak}t_{m.peak} = (m/2 \pi e)^{m/2} (Q_m t_0^{2-m/2} m K_0)$ (4)

さて、式(2),(3),(4)を逆に解き、熱源の 形状が、点、直線、平面である場合に発熱 量、ピーク温度差、ピーク時刻から、体積 熱容量、温度伝導率、熱伝導率を求める関 係式が(5),(6),(7)のように与えられる。

$$C_0 = (m/2 \pi e)^{m/2} (Q_m / f_{m.peak} r_0^m)$$
(5)

$$D_0 = r_0^2 / 2mt_{m, peak} \tag{6}$$

$$K_0 = (m/2 \pi e)^{m/2} (Q_m r_0^{2-m} / 2m f_{m.peak} t_{m.peak})$$
(7)

<u>記号とSI単位</u>		
f _m = 初期温度との温度差		[K]
f _{m.peak} = ピーク温度差		[K]
t _{m.peak} = ピーク時刻		[s]
m= 熱源の形状による定数	汝	[1]
(点熱源:3、直線熱源:2	2、平面	ī熱源:1)
C0=体積熱容量	[J K ⁻¹	m ⁻³]
D0=温度伝導率	[m ² s ⁻	1]
K ₀ =熱伝導率	[J K ⁻¹	m ⁻¹ s ⁻¹]
Q _m ≕発熱量	[J m ^{m-}	3]
r ₀ =ヒーターセンサー間距	離	[m]
t=発熱開始後の経過時間		[s]
π=3.14159・・・(円周率)		
e=2.71828・・・(ネピアの	数)	

- 3. 実用条件に対する測定理論
 - 双円筒ヒーターからパルス状発熱
 する場合の測定理論 -

直線は長さ無限大、太さゼロであり直線 熱源は実現できないので、実用的なヒータ ー形状として有限長の円筒を検討した。 m=2であれば式(7)より、熱伝導率の測定に はヒーターセンサー間距離が無関係になる が、その他は2乗に比例ないし反比例する。 これを緩和するためにヒーター2本を対称 の位置に配置する双円筒ヒーターを検討し た。また、瞬間発熱も実現できないので、 矩形波パルスによる発熱を検討した。

図1は当該プローブの概略図である。プ ローブは、2本の円筒形ヒーター、円周上 に配置された温度センサーおよび枠とから なる。円筒形ヒーターは、いずれも、半径 r_h 、長さ L_h 、両者の中心軸は平行、軸間距 離は $2r_0$ で、両端をそろえて配置されてい る。2本の円筒形ヒーターの対称の中心を 原点Oとする。温度センサーは原点を中心 とする半径 r_s の円周上に配置される。

図2は当該測定器を使用する際の回路図 である。発熱体となる抵抗器H₁、H₂は同 形同大等抵抗とする。

2本の円筒形ヒーターを有するヒートパ ルス方式プローブ型熱特性測定器の理論

前項4.3の熱特性測定器は、2本の平 行直線ヒーターを有する瞬時加熱方式プロ ーブ型熱特性測定器に対する近似であるが、 原型は1本の直線ヒーターを有する瞬時加 熱方式プローブ型熱特性測定器であるので、 それとの比較において理論を述べる。 両者の違いを表1に比較して示す。

図1 2本の円筒形ヒーターを有するプロ ーブ型熱特性測定器のプローブの概要

図2 2本の円筒形ヒーターを有するプロ ーブ型熱特性測定器の回路図 表1 1本の直線ヒーターを有する瞬時加 熱方式プローブ型熱特性測定器と2本の円 筒形ヒーターを有するヒートパルス方式プ ローブ型熱特性測定器の比較

項番	比較事項	 1本の直線 ヒーターを 有する瞬 加熱方式プ ローブ型熱 特性測定器 	2本の円筒形 ヒーターを有 するヒートパ ルス方式プロ ーブ型熱特性 測定器
1	ヒーターの 形状	直線	円筒
2	ヒーターの 太さ	0	半径 r _h (有限>0)
3	ヒーターの 長さ	無限大	長さ L _h (有限<∞)
4	発熱様式	瞬時	矩形波状 ヒートパルス
5	ヒーターの 個数	1	2
6	温度センサ 一の形状	点	円(半径 r _s) 周上に分布

項目1、2、3はヒーター形状を、また 項目4は発熱様式を、それぞれ実現可能な ものとするためのもの。項目5は測定の精 度と信頼性を維持するための、また項目6 は測定の感度を上げるための工夫である。

3.1 矩形波状ヒートパルスとすること の影響評価

矩形波状ヒートパルスの発熱強度をP₂ [W/m]、発熱時間をt_{heat}[s]とする。このと き、発熱量Q₂[J/m]は、

$$Q_2 = P_2 t_{heat} \tag{8}$$

である。そこで、1本の直線ヒーターを有 するプローブ型熱特性測定器が熱量Q₂を瞬 時に発熱したときと、強度P₂で時間t_{heat}の 矩形波状に発熱したときとを比較する。

瞬時発熱方式測定器の場合は、前述の式 (1)~(7)においてm=2とおけば得られる。 $f_{0} = (O_{0}/4 \pi K_{0} t) \exp(-r_{0}^{2}/4D_{0}t)$ (9)

$$C_0 = Q_2 / \pi e f_{2,peak} r_0^2$$
(10)

$$D_0 = r_0^2 / 4t_{2, \text{peak}}$$
(11)

$$K_0 = Q_2 / 4 \pi e f_{2.peak} t_{2.peak}$$
 (12)

一方、矩形波状発熱における温度上昇 f_{2 nuls}は次のようになる。

$$f_{2.puls} = (P_2/4 \pi K_0) \{E_1[r_0^2/4D_0 t] - E_1[r_0^2/4D_0(t-t_{heat})]\}$$
(13)

ここで関数 E₁[x]は次式で定義される積 分指数関数である。

 $E_1[x] = \int_x^\infty e^{-u/u} du$ (積分指数関数) (14)

この温度上昇のピーク温度差およびピー ク時刻を陽に表すことは出来ないが、ピー ク時刻t_{2.puls.peak}と発熱時間t_{heat}の比v、およ びピーク温度差f_{2.puls.peak}との間には次の関 係がある。

$$v = t_{2.puls.peak} / t_{heat}$$
(15)

$$T_{2.puls.peak} \equiv 4D_0 t_{2.puls.peak} / r_0^2$$

= $f_D[v] = 1/\{(v-1) \ln[v/(v-1)]\}$ (16)

$$T_{heat} \equiv 4D_0 t_{heat} / r_0^2 = T_{2.puls.peak} / v \qquad (17)$$

f_{2.puls.peak}=

 $(P_{2} t_{heat} / \pi eC_{0} r_{0}^{2}) \times f[T_{heat}, T_{2.puls.peak}] (18)$ $f[T_{heat}, T_{2.puls.peak}] \equiv (e/T_{heat}) \times$

$$\{E_1[1/T_{2.puls.peak}] - E_1[1/(T_{2.puls.peak}-T_{heat})]\}$$

= f_C[v] = ev(v-1) ln[v/(v-1)] ×

$$\{E_1[(v-1) \ln[v/(v-1)]] - E_1[v \ln[v/(v-1)]]\} (19)$$

- 4 -

$$f_{K}[v] = f_{C}[v] f_{D}[v]$$
(20)
以上より、次式が導かれる。

$$C_{0} = (Q_{2} / \pi ef_{2.puls.peak}r_{0}^{2}) f_{C}[v]$$
(21)

$$D_{0} = (r_{0}^{2} / 4t_{2.puls.peak}) f_{D}[v]$$
(22)

$$K_{0} = (Q_{2} / 4 \pi ef_{2.puls.peak}t_{2.puls.peak}) f_{K}[v]$$
(23)

これらは、瞬時発熱式測定器に対する式 (10)、(11)、(12)に下のように係数 を乗じた形になっている。

 C_0 : 式 (21) = 式 (10) × $f_C[v]$ D_0 : 式 (22) = 式 (11) × $f_D[v]$ K_0 : 式 (23) = 式 (12) × $f_K[v]$

係数の値は表2のようになる。

比 v の値は、測定においては発熱時間 t_{heat} は測定者が決め、ピーク時刻 $t_{2.puls.peak}$ は測定されるのであるから、v の値はそれ らの比として計算できる。したがって、上 記の関係式(21)~(23)から体積熱容量 C_0 、温度伝導率 D_0 、熱伝導率 K_0 (= C_0D_0) を求めることが出来る。

表2 ヒートパルス方式による熱特性測定 のための係数値

u= 1/v	v	$f_{C}[v]$	$f_{D}^{}[v]$	f _K [v]
0.05	20.00	0.99989	1.02609	1.02598
0.10	10.00	0.99954	1.05458	1.05409
0.15	6.667	0.99890	1.08585	1.08465
0.20	5.000	0.99792	1.12036	1.11803
0.25	4.000	0.99655	1.15869	1.15468
0.30	3.333	0.99469	1.20157	1.19519
0.35	2.857	0.99224	1.24996	1.24026
0.40	2.500	0.98907	1.30508	1.29081
0.45	2.222	0.98501	1.36857	1.34805
0.50	2.000	0.97980	1.44270	1.41356
0.55	1.818	0.97313	1.53063	1.48950
0.60	1.667	0.96452	1.63704	1.57894
0.65	1.538	0.95327	1.76901	1.68634
0.70	1.429	0.93832	1.93803	1.81849
0.75	1.333	0.91794	2.16404	1.98647
0.80	1.250	0.88911	2.48534	2.20974
0.85	1.176	0.84597	2.98698	2.52689
0.90	1.111	0.77525	3.90865	3.03019
0.95	1.053	0.63655	6.34236	4.03724

- 5 -

3.2 ヒーターが円筒形であり温度セン サーが円形であることの効果と影響の評価

ヒーターを円筒形にすることの効果は、

第1に、作りやすいこと、

第2に、発熱面が中心軸から離れ、発 熱面積が大きくなるので発熱面の温度上 昇がそれだけ低く抑えられること、

である。

温度センサーを円周上に均一に配置する ことの効果は、

第1に、検出端を置く場所が増え、設 置しやすいこと、

第2に、検出端の個数が増やせるので、 温度検出の感度を高められること、

である。

ヒーターが円筒形になり、温度センサー が円周上の平均温度を測定することの測定 結果への影響は、発熱部と検温部の距離が 様々になることにより、ヒーター温度セン サー間距離が単一でなくなることである。 この点について、ヒーター円筒の半径(r_n) と温度センサー円の半径(r_s)を様々に変 えて数値計算した結果をまとめると次のよ うになる。

まず、1本の直線ヒーターを有するプロ ーブ型熱特性測定器が熱量 Q_2 を瞬時に発熱 したときの温度上昇 f_2 および、そのピーク 温度差 $f_{2.peak}$ 、ピーク時刻 $t_{2.peak}$ と熱特性

 $(C_0, D_0, K_0 = C_0 D_0)$ との関係は次のように書ける。 F_2 とTは、それぞれ、 f_2 とtを 無次元化したもので、ピーク時におけるそれら $F_{2,peak}$ と $T_{2,peak}$ の値は1である。

- $f_2 = (Q_2/4 \ \pi \ K_0 t) \exp(-r_0^2/4D_0 t)$ (24)
- $F_{2.peak} \equiv \pi e C_0 r_0^2 f_{2.peak} / Q_2 = 1$ (25)
- $T_{2.peak} \equiv 4D_0 t_{2.peak} / r_0^2 = 1$ (26)
- $F_{2.peak} T_{2.peak} = 4 \pi e K_0 f_{2.peak} t_{2.peak} / Q_2 = 1$ (27)

これに対し、ヒーターが半径 r_h の円筒、 温度センサーが半径 r_s の円であるプローブ 型熱特性測定器が熱量 Q_2 を瞬時に発熱した ときの温度上昇のピーク温度差 $f_{c.peak}$ 、ピ ーク時刻 $t_{c.peak}$ は、半径 r_h と r_s がいずれもヒ ーターと温度センサーの中心間距離 r_0 の 0.3 倍以下の場合の数値計算結果より、そ れを式(28)、(29)の無次元数 $F_{c.peak}$ 、 $T_{c.peak}$ に直し、その等値線を図3、4に示 す。この結果は、この範囲(0 $\leq r_h/r_0 \leq 0.3$ 、 0 $\leq r_s/r_0 \leq 0.3$)内では、次式で近似される。

$$F_{c.peak} \equiv \pi e C_0 r_0^2 f_{c.peak} / Q_2$$

= 1+0.3(r_h^4 + r_s^4) / r_0^4 (28)

$$T_{c.peak} \equiv 4D_0 t_{c.peak} / r_0^2$$

= 1-2(r_h^2 + r_s^2) / r_0^2 (29)

$$F_{c.peak} T_{c.peak} = 4 \pi e K_0 f_{c.peak} t_{c.peak} /Q_2$$

= {1+0.3(r_h⁴ + r_s⁴)/r₀⁴} {1-2(r_h² + r_s²)/r₀²}
(30)

この計算結果から分かるように、ヒータ ーが円筒形になり温度センサーが円形にな ると、ピーク時刻は明らかに早くなるが、 ピーク温度差は大きくはなるもののその程 度はごくわずかである。すなわち、ヒータ

1本離れるとF_{c.peak}の値が0.0005増す。

ーが円筒形になり温度センサーが円形になることの影響は、ピーク時刻に強く現れる。

したがって、これらの半径比(r_h/r₀と r_s/r₀)が変更になる場合には、式(28)か ら求められる体積熱容量の較正係数はその 影響を受けにくいが、式(29)および(30) から求められる温度伝導率および熱伝導率 の較正係数はその影響を受けやすい。

3.3 ヒーターの長さが有限であること の影響の評価

ヒーターを長さL_hの線分(太さがゼロ) とし、温度センサーをヒーターの中央から ヒーターと直角に距離r₀隔てたところに置 いた場合、ヒーターが直線(太さがゼロ、 長さが無限大)である場合とどのように変

わるかを検討した。まず、長さ L_h の線分ヒ ーターが単位長さあたり Q_L の熱量を瞬時に 発熱した場合、ヒーターの中央からヒータ ーと直角に距離 r_0 隔てた点における温度上 昇 f_L は式(31)のように表される。

 $f_L = (Q_L / 4 \pi K_0 t) \exp[-r_0^2 / 4D_0 t]$

 $\operatorname{erf}[(L_{h}/2r_{0})(4D_{0}t/r_{0}^{2})^{1/2}]$ (31)

このように、ヒーターが線分である場合 の温度上昇は、ヒーターが直線であるの場 合の温度上昇に誤差関数を乗じて表される。

そこで、ヒーターが線分である場合のピ ーク温度差およびピーク時刻が、ヒーター が直線である場合とどのように異なるかを 数値として調べた。その結果を、図5にグ ラフとして示す。

図5 線分ヒーターの場合と直線ヒーター の場合のピーク温度差とピーク時刻の比

横軸は、ヒーターセンサー間距離 に対する半ヒーター長の比L_h/2r₀。縦 軸は、ピーク時刻およびピーク温度 差が、ヒーター長が無限である場合 のそれにくらべた比。

上の曲線がピーク温度差における 比g[L_h/2r₀]、下の曲線がピーク時刻 における比h[L_h/2r₀]。

図5に見るように、半ヒーター長がヒー ターセンサー間距離の2倍以上であればピ ーク温度差が、また、2.4倍以上であれ ばピーク時刻が、ヒーター長が無限大の場 合の99%以上の値となる。さらにこの比 $(L_n/2r_0)$ が、2.8以上であれば、実質的 にヒーター長が無限大の場合と変わらない。

3.4 ヒーターが2本あることの効果

ヒーターが1本である場合にはヒーター と温度センサーの中心間距離が変化すると それは直ちにピーク温度差およびピーク時 刻を変化させる。したがって、正確な測定 のためには、ヒーターと温度センサーの中 心間距離を正確に保つ必要がある。

ヒーターを温度センサーに対して対称の

原点に最も近い等値線が値1、 原点から左右に遠ざかるにつれ て値が0.01ずつ増し、上下に遠ざ かるにつれて値が0.01ずつ減ずる。

位置に2本置けば、ピーク温度差は原点付 近では図6のようになり、原点は鞍点にな る。したがって、原点に温度センサーを置 くことにすれば、測定位置のわずかな変化 に対しては測定値がほとんど変わらず、ピ ーク温度差もピーク時刻も測定位置のわず かな誤差に影響されることなく正しい値を 得やすい。

4. プローブの試作、較正と測定

試作した双円筒ヒータープローブの諸元 を表2に示す。較正をジェランガム0.3% の水ゲルでおこない、沼山鋳物砂を水分飽 和度0~100%の種々の含水比に調製し、ま たNaClを加え、熱特性を測定した。

4. プローブの試作、較正と測定

試作した双円筒ヒータープローブの諸元 を表2に示す。較正をジェランガム0.3% の水ゲルでおこない、沼山鋳物砂を水分飽 和度0~100%の種々の含水比に調製し、ま たNaClを加え、熱特性を測定した。 加熱 時間は10~60s、電流は約0.5Aとし、加熱 前10分間、加熱中、加熱終了までの計30分 間の温度変化を5秒間隔で測定し、メモリ に記憶させた。まず、基準温度に含まれる 高周波ノイズを除去し、温度上昇の値がピ ーク値の80%以上であるデータを4次多項 式で近似し、それを微分してピークを検出 した。データ処理の例を図7に示す。

図7 測定値とその処理の例

5. 結果と考察

ジェランガム水ゲルの熱特性を同温度の 水と同じと仮定して測定値と比較したとこ ろ、体積熱容量は11%低め、温度伝導率は 13%高め、熱伝導率は0.7%高めに測定さ れた。これは、ヒーターセンサー間の平均 距離(15.0 mm)を6%小さくする(14.1 mm)こ とにより、体積熱容量、温度伝導率ともに 誤差を0.37%と小さくすることができる。 これは、ヒーターセンサー間距離の作製誤 差によるものかもしれない。

沼山鋳物砂を対象とした測定結果は体積 熱容量と水分率の間の直線性は10%程度の 誤差を含み、必ずしも満足いくものでなく、 さらに改良の余地があるものと考えられた。 改良点としては、ヒーターセンサー間距離 を正確に保つ工夫をすることが考えられる。 また、3%NaCl水溶液を混入しても熱特性 の測定値はほとんど変化せず、このセンサ ーは塩分の混入の影響を受けずに測定でき ることが示唆された。

謝辞

本研究は一部、財団法人ソルト・サイエ ンス研究財団からの研究助成金を得て行わ れた。また、測定とデータ整理に岩手大学 農学部卒論専攻生竹田良成君の補助を得た。 記して各位に感謝する。

参考文献

- D. A. de Vries: A nonstationary method for determining thermal conductivity of soil in situ, Soil Sci., 73, 83/89 (1952)
- D. A. de Vries and A. J. Peck: On the cylindrical probe method of measuring thermal conductivity with special reference to soils I. Extension of theory and discussion of probe characteristics, Aust. J. Phys., 11, 255/271 (1958)
- D. A. de Vries and A. J. Peck: On the cylindrical probe method of measuring thermal conductivity with special reference to soils II. Analysis of moisture effects, Aust. J. Phys., 11-3, 409/423 (1958)
- T. Kasubuchi: Twin transient-state cylindrical-probe method for the determination of the thermal conductivity of soil, Soil Sci., 124-5, 255/258 (1977)
- 5) 粕渕辰昭: 土壌の熱伝導に関する研究, 農技研 報, B33, 1/54 (1982)
- 6) G. S. Campbell, C. Calissendorff and J. H. Williams: Probe for measuring soil specific heat using a heat-pulse method, Soil Sci. Soc. Am. J., 55,291/293 (1991)
- L. L. Bristow, G. S. Campbell and K. Calissendorff: Test of a heat-pulse probe for measuring changes in soil water content, Soil Sci. Soc. Am. J., 57-4, 930/934 (1993)
- 8) G. L. Kluitenberg, J. M. Ham and K. L. Bristow: Error analysis of the heat pulse method for measuring soil volumetric heat capacity, Soil Sci. Soc. Am. J., 57, 1445/1451 (1993)
- K. L. Bristow, G. J. Kluitenberg and R. Horton: Measurement of soil thermal properties with a dualprobe heat-pulse technique, Soil Sci. Soc. Am. J., 58-5, 1288/1294 (1994)
- K. L. Bristow, R. D. White and G. J. Kluitenberg: Comparison of single and dual probes for measuring soil thermal properties with transient heating, Aust. J. Soil Res., **32**, 447/464 (1994)
- K. L. Bristow, J. R. Bilskie, G. J. Kluitenberg and R. Horton: Comparison of techniques for extracting soil thermal properties from dual-probe heat-pulse data, Soil Sci., 160-1, 1/7 (1995)