計測自動制御学会東北支部第161回研究集会(1996.86.28)

^{資料番号 161-14} フィードフォワード制御の導入による 風力発電機の出力変動抑制方策

Control Strategy for Power Fluctuations of a Wind Generator by using Feed Forward Control Scheme

○松坂 知行*、土屋 敬一**

Tomoyuki Matsuzaka*,Keiichi Tuchiya**

*八戸工業大学、**東北電力

*Hachinohe Institute of Technolgy,**Tohoku Electric Power Company

キーワード:風力発電機(Wind generator)、出力変動(Power fluctuations)、フィードフォワード制御(Feed forward control)

連絡先:〒031 八戸市大字妙字大開88-1 八戸工業大学情報システム工学研究所

松坂 知行、Tel: (0178)25-8139、Fax: (0178)25-1691、E:mail: tom@hachi.hi-tech.ac.jp

1. まえがき

風力発電機は、常に変動する風力エネルギーに より駆動されているので、出力変動が大きい。通常 出力を一定に維持するため、フィードバックによる ピッチ角制御で対応しているが、風車の慣性が非常 に大きいため、風力エネルギーの変動が激しい場合 には、ピッチ制御を適切に行わないと出力の変動を 抑えることが困難になる。特に、起伏の激しい山地 に設置されている風力発電機では、風の乱れが多い ため、出力に大きな変動が生ずる。このため、風力 発電機を小容量の電力系統に接続した場合、系統に 影響を与える可能性が出てくるので、適切な運転方 法を考慮しなければならない。このような出力変動 は、複数の風力発電機を同一注入点に接続すること により、全体としては出力変動を平滑化することが できる。しかし、この場合でも風車群に突風が同時 に加えられた場合や、あるいは大容量の風力発電機 を離島などの、小容量の単独系統や配電線に接続し

ている場合には、配電線の負荷に与える影響は無視 できない。

本論文は、出力変動を抑えるためのピッチ角の制 御方法を提案するものである。そのために、まづ竜 飛ウインドパークで用いられている風力発電機のモ デリングを行い、実観測データを用いてこのモデル を妥当性を検討した。つぎに、フィードフォワード 制御の導入をこのモデルに適用し、出力変動を抑制 する方法として、有効であることをシミュレーショ ンにより確認したので報告する。

2. 風車発電機のモデリング

風力発電機の制御方策をを検討するためには、風 力発電機全体のモデルを構築する必要がある。風力 発電機は風車、発電機、制御機構などから構成され るので、以下これらの構成要素と相互の関係につい て述べる。

2.1 風車

1

風車により得られる風力エネルギー P, は 次式のように与えられる^{(1), (2)}。

 $P_{*} = C_{*}V_{*}^{3}\rho A/2$ (1) ここで V_{*} :風速 ρ :空気密度 A:風車の回転 断面積

C,は出力係数と呼ばれ、次式で定義される周速比 λとピッチ角βの関数になる。本稿では以下の多項 式を用いて近似した。

R:風車半径 Ω:風車の回転角速度

また $c_1(eta)$ 、 $c_2(eta)$ 、 $c_3(eta)$ は以下のように表され

$$c_{1}(\beta) = c_{10} + c_{11}\beta + c_{12}\beta^{2} + c_{13}\beta^{3} + c_{14}\beta^{4}$$

$$c_{2}(\beta) = c_{20} + c_{21}\beta + c_{22}\beta^{2} + c_{23}\beta^{3} + c_{24}\beta^{4}$$

$$c_{3}(\beta) = c_{30} + c_{31}\beta + c_{32}\beta^{2} + c_{33}\beta^{3} + c_{34}\beta^{4}$$
....(4)

ここで $c_{10} \sim c_{14}$ は定数である。

Fig.1 Power coefficient

図1に出力係数を示す。出力係数は周速比とピッ チ角に関して図示のように変化し、ピッチ角が増加 するにつれて出力係数のピーク値は減少する。

なおピッチ角は通常マイナスで表示されるが、本稿では便宜上プラスで表示してある。図2は出力 *P*, と風速*V*, 、ピッチ角βとの関係を示し、同じ一風速

に対し、ピッチ角を増加すると出力は減少し、ピッ

Fig. 2 Power characteristics

チ角を減少させると出力が増加することを表している。また特定のピッチ角に対する出力曲線は(5)、(6) 式から計算できる。

$$a_{1}(\beta) = \alpha_{10} + \alpha_{12}\beta + a_{13}\beta^{2} + \alpha_{14}\beta^{3}$$

$$a_{2}(\beta) = \alpha_{20} + \alpha_{22}\beta + \alpha_{23}\beta^{2} + \alpha_{24}\beta^{3}$$
....(6)
ここで $\alpha_{10} \sim \alpha_{24}$ は定数である。

いまピッチ角 10 度一定のときの実測値と計算値を 比較すれば、両者は図示のように一致することが分 かる。実測値はデータを 10 分間平均して求めたもの である。

2.2 風速によるピッチ角の制御則

つぎにピッチ角の制御方法について述べる。一般 に一定速運転の風車のピッチ角の制御は、風速が起 動風速以下、起動風速から定格風速、定格風速から 停止風速、停止風速以上までの四つの範囲に分けて 考えることができる。竜飛ウインドパークの風車で は、風車のピッチ制御は以下のようにして行われる。 (1) 風速が起動風速以下

 $V_w ≤ 5$ のとき、すなわち起動風速以下のときは、安 全のためピッチ角を $\beta_c = 90$ 度という一定の値に 押さえ、突風の際にも風車トルクが発生しないよう にする。

(2) 風速が起動風速から定格風速の範囲

風速が $5 \leq V_* \leq 12.5$ のとき、ピッチ角を $\beta_f = 10 度で一定にし、風車が風エネルギーを最大$ 限に受けるようにする。

(3) 定格風速から停止風速の範囲

風 速 が $12.5 \le V_w \le 24$ の と き 、 定 格 出 力 $P_{wo} = 275$ (kW)の一定値に維持するようにピッチ角 を制御する。ピッチ角と風速の関係は(6)式を解くこ とによって求められ、このときのピッチ角 β_w は具 体的には(8)式で近似できる。

 $\beta_{m} = \beta_{m0} + \beta_{m1}V_{w} + \beta_{m2}V_{w}^{2} \dots \dots \dots \dots \dots \dots (7)$ ここに β_{m0} 、 β_{m1} 、 β_{m2} は定数である。

(4) 停止風速以上

風速が $V_{w} \ge 24$ のとき風車を停止させる。このとき は(1)と同じようにピッチ角を $\beta_{c} = 90$ とし風エ ネルギーを逸らす。

図3はケース(1)~(4)における風速とピッチ角の 関係を示す。図中の実測値は10分間の平均値を求め たもので、計算値と一致していることが認められた。 なお制御に用いられる風速の計測は、タワー上に設 置されている風速計で行っている。

2.3 実効風速の推定

上述の制御則は、風の変動の無い静的状態におけ る制御則であり、実際の風車は、常に変動する風の 中で動作している。また風車前面の風速の実測は困 難であるため、実際に観測される出力、ピッチ角の データから以下のようにして実効風速を推定する。

 P_{w} 、 β 、 V_{w} の関係は(6)式により決定されるが、 これを

ある関数fで表せば

 $P_{w} = f(\beta, V_{w})$ (8) また風速 V_{w} 、ピッチ角βもある関数g、hを用いて $V_{w} = g(P_{w}, \beta)$ (9)

のように表せる。(8)、(9)、(10)式は風の変動の無 い静的な場合に成立するものである。しかし実際の 風車は常に変動する風速の下で動作しているので、 図3の出力曲線にそってピッチ角を制御するために は、変動する風速から何らかの方法で、静的な状態 に近い実効風速を推定する必要がある。いまある時 点kで観測された発電機出力を P_{μ}^{*} 、ピッチ角を β^{*} とすると実効風速 \hat{V}_{μ}^{*} は(9)式を用いて

と推定するのが妥当であろう。この推定方法は、風車の慣性により出力、ピッチ角の観測値から統計的なノイズ成分が軽減されるので、推定値はより定常的な値に近くなる。この推定値をもとに、定格出力 P_{w0} を維持するために必要な、k+1時点のピッチ角 β^{**} は次式のように求められる。

2.4 出力変化に対するピッチ角の制御量

つぎに定格出力における、出力変化に対するピッ チ角変化 $\Delta \beta / \Delta P_{u0}$ について述べる。いま定格出力を P_{w0} 、そのときのピッチ角を β_0 、風速を V_u とする と(6) 式より

が成り立つ。さらに同じ風速で、出力が ΔP_{uv} だけ変化したときのピッチ角の変化を $\Delta \beta$ とすれば、

 $P_{wo} + \Delta P_{wo} = a_1 (\beta_0 + \Delta \beta) + a_2 (\beta_0 + \Delta \beta) V_w^2 \dots (14)$

$$G(\beta_{0}) = \frac{d\beta}{dP_{vo}} = \frac{a_{2}(\beta_{0})}{P_{vo}a_{1}(\beta_{0}) + a_{2}(\beta_{0})a_{1}(\beta_{0}) - a_{1}(\beta_{0})a_{2}(\beta_{0})}$$

が導かれる。(15)式から求められる $\Delta\beta$ は、出力を
定格に維持するために必要なピッチ角の制御量を与
える。図4は(15)式を図示したもので、ピッチ角の
値により制御量が変化することがわかる。なお
 $\beta_{0} \leq 10$ では $G(\beta_{0})$ は一定である。

Fig.4 Pitch angle deviation vs. power deviation

以上で各要素の記述を終わったので、動的制御を 含めた風力発電機全体の制御方法について述べる。

3. 風力発電機の運転と制御

風力発電機の運転方式には、大きく分けて一定速 運転、可変速運転、固定ピッチ角運転方式などがあ る。一定速運転は同期速度、あるいは同期速度近辺 で一定速度で運転する方式で、系統連系の場合には、 同期発電機では同期速度、誘導発電機では定格出力 を与える一定スリップで運転するため正確な速度制 御が必要になる。一方可変速運転方式⁽³⁾は、風車の 最大効率を維持しつつ、発電機の回転速度を可変速 度で運転する方法で、系統に連系する場合、発電機 の速度と系統周波数の整合をとる必要があるため、 通常パワーエレクトロニクス装置を用いる。この方 式は厳密にピッチ角を制御する必要がないが、イン バータ、コンバータなどの設置費用が増えるのが欠 点である。また固定ピッチ角運転方式は、起動風速 から停止風速の範囲まで固定ピッチ角で運転され、 停止風速以上では風車のブレードのひねりやチップ ベーンなどを利用して風車の制御を行う方式である。

また通常このような運転方法を実現するには、風 の方位に風車を正対させるためのヨー制御、固定ピ ッチ制御以外の風車では回転速度を制御するための ピッチ制御が必要になる。本稿で述べる竜飛ウイン ドパークの風車発電機は、一定速運転であり、ヨー 制御、ピッチ角制御の機能をもっている。また以下 のモデルでは風車が常に、ヨー制御により風の方位 に追随し、正対しているものとする。

3.1 ロータの駆動方程式

風車トルクを T_w 、発電機による電気的トルクを T_g 、風車発電機の慣性モーメントをJ、回転角速度を Ω とすれば

が成立する。両辺にΩを乗じると

となる。 P_w は(1)式、 P_g は(18)式で与えられる。

3.2 風力発電機の制御系^{(4), (5)}

図5は制御系全体のブロック図を示す。ブロック 図の説明は以下の通りである。

(a) 2.2 の(1)~(4)で述べたように、風速 V_{w} にあ わせて β_{e} 、 β_{f} 、 β_{m} の中からピッチ制御の指令値を 選択する必要がある。この選択は、風速がある時間 持続したことを検出した上で行われ、Fnsw はこの 切り替えを行う。

(b) ピッチ制御では指令値を受けて、油圧サーボ機 構に伝え、ブレードピッチ角を変える。この制御は、 風車のピッチ角を急速に変えると、ブレードにスト レスがかかり、疲労を加速することと、油圧サーボ 機構のパワーに限界があるので、単位時間当たりの 変化量を制限している。ブロック図ではリミッタ付 き積分器で表されている。

(c) P_xと P_yの差を積分し、(17)式にしたがって風
 車角速度が計算される。

(d) 定格出力 P_w と現在の発電機出力 P_y の差を PD 制 御器に加える。

(e) 現在のピッチ角を用いて、PD 制御器の出力を
 (15)式により補正し、新たなピッチ角指令値 β₂を求める。

(f) 現在のピッチ角βと発電機出力P₂から(11)式 により実効風速を推定する。

(g) 上で得られた実効風速から、新たなピッチ角指 令値 *β*, を(12)式により求める。

(h) MAX は β_1 、 β_2 の中の大きい方を求める。大きい 方を選択する理由は、ピッチ角が大きい方が、風車 をより安全な方向(停止する方向)に制御するため である。なお風速の変動が小さい場合は β_1 が支配的 であり、変動の大きい場合は PD 制御の微分器の出力 が大きくなるので β_2 が支配的になる。

Fig.5 Block diagram of control system

4. シミュレーション

つぎにモデルの妥当性を調べるために実測値と シミュレーション結果とを比較した。

4.1 風速の計測

この場合、瞬時風速の実測値をどの位置で測定す

るかが問題になる。風車の前面で風速を計測すれば、 風速計により風が乱れてしまうので、精密に測定す るためには風車軸に内蔵した特別な風速計を設置す る必要がある。しかし、竜飛ウインドパークの風車 にはこのような風速計の組み込みが困難であるため、 風速の計測は、風車の起動停止を行うためにナセル 上に設置された風速計で採取した。図6にこれを示 す。

Fig.7 Correlation of wind speed measurements

この風速計は風車の後方に設置されているため、 風車の回転による風の乱れを受けるのではないかと いう危ぐがあった。そこで図示のように新たに観測 用風速計を設置し、正対する風向を選んで二つの風 速計のデータを比較した。その結果を図7に示す 二つのデータは相関係数0.9015 であり、十分相関が 認められた。また発電機のナセルの風速をx、観測 用風速計の風速を y とすると最小二乗法による近 似式は

y = 0.9995x + 0.5638.....(19) となる。そこでこの式を用いてxからyを推定し、 この値を瞬時風速と見なすことにした。 以上でナセル上の風速計のデータが利用可能である ことが分かったので、この風速を図6の入力データ V_x として用い、シミュレーションを行った

4.2 実測値とシミュレーション結果の比較

Fig.8 Wind speed

図8は入力として用いた風速で、大きさは15(m/s) ~23(m/s)で、定格風速を超えており、したがって図 9に示すように、ピッチ角は10度以上で制御されて いる。図9は出力を示す。この図から分かるように、 出力の変動が非常に大きく、定格は275(kW)である が、220(kW)~340(kW)の範囲で変動している。

風力発電機は、もともと変動の大きい風力エネル

Fig.9 Pitch angle

Fig.10 Power

ギーで駆動されているため、出力の変動は大きくな るが、加えて竜飛ウインドパークでは、風力発電機 は起伏の激しい地形に設置されているので風の乱れ が大きく、このことが出力の変動をさらに大きなも のにしている。図9、図10には実測値とシミュレー ション結果との比較を示しているが、図から分かる ように実測値とシミュレーション結果はほぼ一致し、 モデリングの妥当性が示されたものと思われる。な お部分的に不一致のところがあるが、これは風向の 変動によるものと思われる。

つぎに、風力発電機の出力変動の大きい原因の一 つに制御系の構成が挙げられる。その理由は、風力 発電機は慣性モーメントが非常に大きいので、フィ ードバック制御だけでは位相遅れが生じ、発生電力 にオーバーシュートが生じるためである。すなわち、 フィードバック信号は位相が遅れるため、風の変化 に追いつかない。一方速く追随させるための方法と して油圧サーボ機構のパワーを挙げる方法があるが、 重量、価格の問題から実用的ではない。そこでフィ ードフォワード制御の導入を提案する^{(1),(2),(6)}。

このとき、フィードフォワード信号をどこから取 り出すかという問題があるが、幸い4.1 で述べたよ うにナセル上の風速計が風車の受ける風速と相関が あるので、この風速をフィードフォワード信号とし て用いることにした。この風速は、風車の出力より も素早く風速の変化を検出するので、フィードフォ ワード信号として適当である。その方法として、図 5 のプロック図のように、位相進み要素を通して、 ピッチ制御のプロックの加算点に風速をフィードフ オワードすることにした。フィードフォワードによ りピッチ角制御の位相を進めるのが目的である。

4.3 風力発電機の周波数応答

つぎに、フィードフォワード要素の設計法を考え るため、風力発電機の周波数応答を検討することに した。その方法としては、図5のブロック図で、風 速 V_{μ} の振幅を1(m/s)一定とし、周波数を0.02(Hz) ~10(Hz)まで変化させ、周波数特性を調べた。その 結果を図12に示す。この図で、利得は

を示し、位相はΔP, / ΔV, の位相差を示す。

この図から分かるように、この風力発電機は 0.3(Hz)の周波数で振幅がピークになる。またこの周 波数より低い場合も、高い場合も利得は減衰する。 この理由は、風の周波数が低い場合には、風車と制 御系を含めたシステム全体の応答が風の変化に追随 するため、出力の変動が少ないことを示し、風の周 波数が高い場合には、風の変動が風車の慣性モーメ ントにより吸収され、出力の変動が小さくなること を意味している。この中間の 0.3(Hz)では風の変動 に応答し易いため、利得が大きくなる。

一方位相は、0.3(Hz)以下では出力の方が進み、 0.3(Hz)以上では遅れている。また 0.3(Hz)では位相 差はない。

そこで出力の変動を抑えるためには、0.3(Hz)におけ る利得を下げるようにした。このため、図 5(i)のよ うな位相進み要素において、f = 0.3(Hz)のとき

 $\omega T_{fW} \le 1$ $K_{fW} / T_{fW} = 10$ (21)

となるように T_mを選び、最終的にはミュレーションで決定した。図 11 には、フィードフォワード要素

を加えた場合の周波数特性も示してある。図から分かるように、利得はピーク時で約30(dB)下がっている。

Fig.11 Frequency characteristics of wind generator

Fig. 12 Power with feed forward

4.4 フィードフォワード制御の導入効果

図 12 は、図 8 の風速を加えた場合の出力のシミュ レーション結果である。図 10 と比較すれば分かるよ うに、出力の変動はきわめて小さくなっており、フ ィードフォワード制御の効果が顕著に現れているこ とが分かる。なお図 12 において、フィードフォワー ド制御を加えた場合でも変動が大きい部分があるが、 これは位相進み要素の利得が、周波数の低いところ で小さくなるために、フィードフォワード制御の効 果が減少するためである。

Fig. 13 Largely fluctuating wind speed

つぎに図 13 は、図 8 よりも変動が大きい場合の風 速で、図 14 はそのときの出力の実測値、図 15 はフ ィードフォワード要素を加えた場合の出力のシミュ レーション結果である。図示のようにこの場合も出 力の変動はきわめて小さくなっており、フィードフ ォワード制御の効果が現れていることが分かる。

Fig. 14 Power without feed forward

Fig. 15 Power with feed forward

5. まとめ

以上竜飛ウインドパークの風力発電機をもとに して精緻なモデルを構築し、実測値とシミュレーシ ョンを比較し、モデルの妥当性を確認した。このモ デルをもとにして、風速を入力とし、発電機出力を 出力として周波数特性を明らかにした。この結果周 波数特性は、特定の風速の周波数で利得がピーク値 を示し、この周波数の風速に対して変動しやすいこ とが分かった。この変動の原因は、風車の慣性モー メントが大きいため、フィードバック制御だけでは ピッチ角の修正動作が遅れるためである。そこで、 風力発電機の出力変動を抑制するための方法として フィードフォワード制御を導入し、ピッチ角制御の 位相を進める方法を提案した。これにより利得のピ 一ク値を下げ、出力変動を大幅に減少できることを シミュレーションの結果確認できた。本稿で提案さ れた方法を用いれば、将来単機容量の大きい風力発 電機を小容量の配電線に注入した場合でも、風速の 変動に対する出力変動を抑えることができ、系統運 用への影響も少なくする上で有効な制御方法と考え る。またピッチ角制御に要する制御エネルギーを増 加させる必要もない。

なおフィードフォワード要素の最適構成法、最適 パラメータ決定法、制御系全体を含めた安定性など の検討は今後の課題である。また現段階ではシミュ レーションであるため、今後実機で確かめていきた い。

また本研究の一部は、八戸工業大学プロジュエク ト研究の支援を頂いたものである。

参考文献

- (1) 松坂、土屋:「フィードフォワード制御による
 風力発電機の出力変動安定化」、第 17 回風力
 エネルギー利用シンポジューム、197/200
 (1995)
- (2) 松坂、土屋:「風力発電機のモデリングと制御
 に関する研究」、電力技術研究会資料、PE-95-135、37/47(1995)
- (3) T.Matsuzaka, K.Tuchiya:"A variable wind generating system and its test results", Proc. of European Wind Energy Conference, part two, 608/612(1989)
- (4) 土屋、松坂、山田、佐久間、猪股:「風力発電
 システムの運転特性シミュレーション」、電学
 論 B113-7, 752/759 (1993)
- (5) T.Matsuzaka,K.Tuchiya,: "Performance and Power Generation Estimation of TAPPI Wind park", Proc. Of Beijin Int.Conference on Wind Energy", D1/D6(1995)
- (6) T.Matsuzaka,K.Tuchiya,: "Power FluctuationStabilization of a Wind Generator by using Feed forward Control",Book of abstract EUWEC'96,p14.17,Goteborg,(1996)
 (Proceedings to be published)