計测自動制御学会東北支部 第 164 回研究集会 (1996.11.22) 資料番号 164-8

宇宙ロボット衛星における姿勢安定に関する考察

An Attitude Stability for Space Robot Satelites

○清水大晃,吉田和哉

🔿 Motoaki Shimizu, Kazuya Yoshida

東北大学

Tohoku University

キーワード : フリーフライング宇宙ロボット (Free Frying Space Robot), 位相面図 (Attitude Phase Chart), 姿勢停止限界 (Attitude Motion Boundary), 最大角運動量 (Maximum Angular Momentum)

連絡先: 〒980-77 仙台市青葉区荒卷字青葉東北大学工学部 機械航空工学科 吉田研究室 清水大晃, Tel.: (022)217-6993, Fax.: (022)217-6991, E-mail: shimizu@space.mech.tohoku.ac.jp

1. はじめに

国際宇宙ステーション計画に代表されるように、 今世紀末から 21 世紀にかけて、宇宙開発は大い なる飛躍をとげることが予想される.しかし、宇 宙開発においては人命を危険にさらす可能性があ り、宇宙における人的資源の省力化が求められて いる.このような背景のもと、宇宙開発計画の中 においてロボット技術の役割に対する期待がます ます高まりつつある.

宇宙開発でのロボット技術の応用の具体例とし て考えられているのが"フリーフライング宇宙ロ ボット"¹⁾である.フリーフライング宇宙ロボット とは人工衛星にロボットマニピュレータを搭載し たロボット衛星である.

その使用用途として, 軌道上での故障衛星の回 収, 修理あるいは宇宙ステーションのような軌道 上大規模構造物の建設, 運用, メインテナンスな どが検討されている.

現段階では軌道上での作業はスペースシャトル

による船外活動が考えられるが,スペースシャト ルでは運用コストが高く,船外活動では作業性が 低く危険である、そこでフリーフライング宇宙ロ ボットを用いて,作業を地上からの遠隔操作で行 うことで,運用コストを安くできるとともに人命 を危険にさらすこともなくなる.

宇宙では地上とダイナミクスが違うことから軌 道上マニピュレーション技術,ロボットの姿勢制 御技術ランデブ・ドッキング (RVD)技術,太陽電 池パドルの振動制御技術などの技術課題が考えら れる.

そこで、本研究ではフリーフライング宇宙ロボッ トの具体例として 1997 年打ち上げ予定の人工衛 星 ETS-VII をとりあげ、上記の技術的課題のうち、 軌道上マニピュレーション、ロボットの姿勢制御 について実用的な制御方式を提案する.

2. ETS-VIIの概要

技術試験衛星 VII 型 (ETS-VII) とはフリーフ

図.1 ETS-VIIの計画図

ライング宇宙ロボットの実験衛星であり、平成9 年度中の打ち上げを目指して、宇宙開発事業団 (NASDA)によって開発が進められている。

ETS-VIIの概観を図1に示す.ETS-VIIは衛星 本体に6自由度ロボットアーム,展開型太陽電池 パドルおよび指向性アンテナを搭載している.太 陽電池パドルや指向性アンテナにはそれぞれ指向 精度要求があり,衛星本体の姿勢をロール,ピッ チ,ヨー軸の3軸それぞれに制御しなくてはなら ない.しかし,ロボットアームの動作は,その反 動として衛星本体に姿勢外乱を発生するので,マ ニピュレーションの際はアームと姿勢の協調制御 が必要である.

3. シミュレーションモデル

図.2 ETS-VIIのモデル図

フリーフライング宇宙ロボットの姿勢運動のダ イナミクスを検討するためにシミュレーションを 行う.

シミュレーションは MDI 社が開発した機構系ダ イナミクス解析ソフト ADAMS を用いて行なった. ADAMS で作成した ETS-VII のモデルを図 2 に 示す.

モデルは6自由度ロボットアーム,展開型太陽 電池パドルおよび衛星本体から構成される.今回, 指向性アンテナは省略した.

6 自由度ロボットアームは剛体リンクから成り, 手先にペイロードを仮定する.アームおよびペイ ロードのパラメータを表1に示す.太陽電池パド ルはフレキシビリティーを模擬するため,剛体を 弾性ヒンジで結合してモデリングしている. 衛星 本体は3軸にリアクションホイールを配置したゼ ロモーメンタム方式を仮定する.リアクションホ イールのパラメータを表2に示す.

4. 姿勢運動に関する考察

4.1 位相面図

フリーフライング宇宙ロボットが軌道上で作業 を行なう際,ロボットアームの動作反動により姿

Table 1 衛星本体とアームのパラメータ

	質量 [kg]	長さ [<i>m</i>]		
	m	l_x	l_y	l_z
base	2500	2.0	2.5	2.0
link1	15	0.30	0.15	0.15
link2	15	0.87	0.35	0.35
tink3	15	0.63	0.35	0.35
link4	8	0.18	0.09	0.09
link5	8	0.18	0.09	0.09
link6	14	0.43	0.20	0.20
Payload	20	0.30	0.30	0.30

Table 2 リアクションホイールのパラメータ

R.W.	質量 [kg]	長さ [m]	最大トルク [Nm]
	m	radius	$ au_{max}$
Roll	5.0	0.1	0.1
Pitch	5.0	0.1	0.1
Yaw	5.0	0.1	0.1

勢運動が変化する.しかし,通信アンテナや太陽 電池パドルの指向精度要求により衛星本体の姿勢 角と姿勢角速度を許容範囲内に収まるように制御 しなくてはならない.そこでフリーフライング宇 宙ロボットの運動を議論するために位相面図を用 いることにする²⁾.位相面図とは図3に示すように 横軸に衛星本体の姿勢角 Ω,縦軸に衛星本体の姿 勢角速度 ω をとったものである.この位相面図を 用いると、姿勢運動をグラフィカルに表示できる.

位相面図の例を図3に示す. 図中, AB間はアー ムの起動, BC 間はアームの等速移動, CD 間は アームの停止の反動によってそれぞれ生じる姿勢 変動であり, また DE 間はアームの停止後の衛星 本体の姿勢誤差の収束過程を示している.(以下, 本論文で扱う位相面図において,図中にでてくる A~E の記号はここで説明したことと同様の意味 を指し示すものとする.) 図は AB 間でロボットアームを衛星本体の機体 軸の負方向に起動している場合で、衛星本体は正 方向に姿勢角がずれるとともに正の角速度も生じ る.その後 BC 間でアームが等速運動している間 に姿勢制御系の働きで衛星本体の姿勢角誤差と姿 勢角速度誤差をある程度吸収する.CD 間ではアー ムの停止により衛星本体には負方向の姿勢のずれ を生じ、再び姿勢誤差が増加する.DE 間ではアー ムは停止しており、姿勢制御系の働きのみが起こっ ているので衛星本体の姿勢誤差は吸収される.ま た、ロボットアームを正方向に起動する場合は図 3 の位相面図は ω , Ω の正負が反転した図となる.

4.2 姿勢停止限界

ロボットアームを動作させる場合,衛星本体の 姿勢誤差を許容範囲に抑えなくてはいけない,そ こで衛星本体の姿勢運動を許容範囲に停止できる かを判定する基準として"姿勢停止限界"なる概念 を提案する.

姿勢停止限界とは、リアクションホイールが最 大トルクで作用したとき、許容姿勢角の範囲内で 姿勢を停止することができる ω の範囲である.

次に姿勢停止限界を規定する曲線の導出を示す. 導出にあたり以下の条件を考える.

(i) 衛星本体の姿勢角速度が ω > 0 の時, 衛星
 本体を停止させるためには (図 3の DE 間に

相当) リアクションホイールは負方向のトル クを発生する.この際,衛星本体の姿勢角誤 差は正の最大姿勢角 Ω_{max} を越えてはなら ない.

(ii) 衛星本体の姿勢角速度が ω < 0 の時, 衛星
 本体を停止させるためにはリアクションホ
 イールは正方向のトルクを発生する.この
 際, 衛星本体の姿勢角誤差は負の最大姿勢
 角 -Ω_{max} を越えてはならない.

(i) の場合,ある姿勢 Ω_s において角速度 ω_s を 持っていたとする.この姿勢運動を最大トルクで 停止させたときの姿勢角 Ω' は以下の式で表わさ れる.

$$\Omega' = \int \omega(t)dt + \Omega_S \tag{1}$$

$$= \frac{1}{2} \frac{I_S}{\tau_{max}} \omega_S(\Omega_S)^2 + \Omega_S \tag{2}$$

ここで、 I_S は衛星本体の慣性モーメント、 τ_{max} はリアクションホイールの最大出力トルクである.

条件より $\Omega' < \Omega_{max}$ でなければならないが, そ の最大限界は $\Omega' = \Omega_{max}$ であり, この最大限界に 到達する姿勢角速度を $\omega' = \omega_{limit}$ とすると

$$\Omega_{max} - \Omega_S = \frac{1}{2} \frac{I_S}{\tau_{max}} \omega_{limit}^2 \tag{3}$$

となる、(3) 式を ω_{limit} について解くと, $\omega_{limit} > 0$ より

$$\omega_{limit} = \sqrt{\frac{2\tau_{max}}{I_S}(\Omega_{max} - \Omega_S)} \tag{4}$$

となる.

(ii)の場合,(i)と同様にして

$$\omega_{limit} = -\sqrt{-\frac{2\tau_{max}}{I_S}(-\Omega_{max} - \Omega_S)}$$
(5)
を得る。

(4) 式と(5) 式を位相面図に図示すると図4の
 23 間及び41 間に相当する.図中の12341の線を
 姿勢停止限界と名付ける.

4.3 姿勢制御シミュレーション

衛星本体の姿勢運動を制御する方法の一つに, 次式で表わされる PD フィードバック制御法が知 られている.

$$\tau = K_p(\Omega_d - \Omega) + K_d(\omega_d - \omega) \tag{6}$$

(6) 式において、 K_p は比例ゲイン、 K_d は微分 ゲイン、 Ω_d は姿勢角の目標値、 ω_d は姿勢角速度 の目標値、 τ はリアクションホイールの出力トル クである.この制御法は既存の人工衛星の姿勢制 御に用いられている.

そこで、この PD 制御法を ETS-VII に適用しシ ミュレーションを行った。シミュレーションの条件 は姿勢角および姿勢角速度の目標値を常にそれぞ れ $\Omega_d = 0, \omega_d = 0$ とし、ロボットアームの動作が 衛星の姿勢安定に及ぼす影響が最も顕著に現れる 衛星のピッチ軸 (太陽電池パドルの回転軸方向) 廻 りについて、ペイロードの搬送を仮定した。

結果を図5に示す. 図中の破線は姿勢停止限界 を表わす(他のシミュレーション結果についても図 中の破線は姿勢停止限界を表わす). 図より衛星本 体の姿勢運動が +Ω 方向に姿勢停止限界を越えて しまっていることがわかる.

4.4 新しい姿勢制御アルゴリズムの提案

図5のシミュレーション結果から,PDフィード バック制御法による衛星本体の姿勢制御ではアー ムの動作反動がそれほど大きくない場合でも,姿 勢停止限界を越えてしまう可能性があることがわ かった、そこで姿勢停止限界を越えないような姿 勢制御アルゴリズムを以下に提案する.

アーム停止後は $\Omega_d = 0, \omega = 0$ とする.

このアルゴリズムの特徴を以下に説明する. 衛 星本体の姿勢が許容範囲を越えるのはアームの停 止及びアーム停止後の衛星本体の姿勢誤差収束過 程である (図3のDE). そこでアームが停止動作 に突入する直前の図3のC点をω>0の場合には なるべく左側, ω<0の場合にはなるべく右側に 近づけることで姿勢停止限界までの距離を最大に することができる. これによりアームの停止よる 衛星本体の姿勢運動を姿勢停止限界以内に抑える られる可能性が向上する.

ここで提案した姿勢制御アルゴリズムの有効性 を確認するためにシミュレーションを行った.アー ム動作については図5と同一とし,姿勢制御に上 記アルゴリズムを用いた.結果を図6に示す.図よ り衛星本体の姿勢運動が姿勢停止限界内に収まっ ていることがわかる.よって提案したアルゴリズ ムの有効性が確認できた.

5. マニピュレータの動作に関する 考察

前節では衛星本体の姿勢制御について考えたが, この節ではマニピュレータの動作に関して考えら れる制約条件について議論する.

図4において姿勢停止限界曲線の23を $\omega_{limit}(\Omega)$ で表す.図4中の41は $-\omega_{limit}(\Omega)$ で表される。衛 星本体の姿勢角速度 ω は常にこの限界内になけれ ばならないから、

$$-\omega_{limit}(\Omega) \le \omega \le \omega_{limit}(\Omega) \tag{7}$$

一方,衛星本体の角運動量を H_s ,マニピュレー タの角運動量を H_m ,リアクションホイールの角運 動量を H_ω で表すと、外力が働かないと仮定すれ ば角運動量は保存されるから以下の式が成り立つ.

$$H_S + H_m + H_\omega = 0 \tag{8}$$

衛星本体の角運動量は H_s = I_sω であるから, (8) 式は

$$H_m + H_\omega = -H_S = -I_S \omega_S \tag{9}$$

となる.よって(7)式と(9)式から以下の式が導出 できる.

$$I_{S}\omega_{limit}(\Omega) - H_{\omega} \ge H_{m} \ge -I_{S}\omega_{limit}(\Omega) - H_{\omega}$$
(10)

ここで、 $\omega \ge H_{\omega}$ は異符号だから、 $H_{\omega} = 0 \ge 仮$ 定すると、以下の式のようにより厳しい制約条件 を与える.

$$I_{S}\omega_{limit}(\Omega) \ge H_{m} \ge -I_{S}\omega_{limit}(\Omega) \tag{11}$$

また, $\omega_{limit}(\Omega)$ の代表値として $\omega_{limit}(0)$ を考えると

$$I_S \omega_{limit}(0) \ge H_m \ge -I_S \omega_{limit}(0) \qquad (12)$$

が導出できる. (12) 式はマニピュレータに許容される最大角運動量を与える式である.

図5 および図6 のシミュレーションにおいては, H_m が(12) 式の条件を満たすようなアーム動作を 仮定していた.いま, H_m が(12) 式の条件を越え るような(より高速な)アーム動作を仮定すると, たとえ 4.4 節に提案した制御アルゴリズムを用い ても図7 のように衛星本体の姿勢誤差は姿勢停止 限界を越えてしまう.

従って、マニピュレータの軌道計画があらかじ めわかっている場合、マニピュレータを動作させる 前にマニピュレータの角運動量を計算し、(12)式 を用いた判定を行う必要がある.もし求められた 角運動量が許容される最大角運動量を上回ってい れば、マニピュレータの動作を中止し、角運動量 が小さくなるように(一般的にはアーム動作をよ り低速にするように)マニピュレータの軌道計画 を再計画しなければならない.

アーム反動による姿勢変動を許容範囲内に収め るためには,(12)式に基づくマニピュレータの軌 道計画と,4.4節に提案した姿勢制御アルゴリズ ムの両者を併用しなければならない。

あとがき

本論文では、姿勢停止限界なる概念を提案し、 姿勢制御アルゴリズムを示すとともに、マニピュ レータに許容される最大角運動量の概念を提案し た、またシミュレーションによる裏付けも行なった。

今後の課題は、姿勢制御アルゴリズムをオンラ インでも通用するように拡張すること、及びマニ ピュレータの角運動量の計算を実時間でできるよ うにすることが考えられる。

参考文献

- 宇宙におけるロボティクスおよびオートメーション研究フォーラム成果報告書,宇宙環境利用推進 センター、(1990)
- 2) 小田 光茂: 衛星搭載ロボットアームと衛星姿勢の 協調制御について(第1報)ロボットアーム動作反 力の実時間推定,日本機械学会論文集,(1995)

図.7 シミュレーション結果(その3)