計測自動制御学会東北支部第 187 回研究集会(2000.6.2) 資料番号 187-16

磁性薄膜による代謝物センサの構成と基礎特性

Construction and Basic Characteristics of Metabolite Sensor Utilizing Magnetic Thin Film

柿崎 和毅, 伊藤 清隆, 谷地 善光, 徳田 春男,

千葉 茂樹,長田 洋,関 享士郎

Kazutake KAKIZAKI , Kiyotaka ITOU , Yoshimitsu YACHI , Haruo TOKUTA , Shigeki CHIBA , Hiroshi OSADA , and Kyoshiro SEKI

岩手大学

Iwate University

キーワード:磁性薄膜(magnetic thin film), スパッタ法(sputtering method), 代謝物センサ(metabolite sensor),酵素反応(enzyme reaction)

連絡先:〒020-8551 岩手県盛岡市上田 4-3-5 岩手大学工学部電気電子工学科 電子システム工学講座

関享士郎, Tel.019(621)6380, Fax.019(621)6380, E-mail:seki@iwate-u.ac.jp

1.緒 言

近年,生体化学分野へエレクトロニクス 技術の導入により,各種のバイオセンサが 開発されている.それらの一つに代謝物セ ンサがある.代謝物センサは,試料と酵素 との反応熱を検出することで試料の識別お よび定量を行う方法が主流であり,主にサ ーミスタの電気特性を用いたものが開発さ れている^{(1),(2)}.

磁性薄膜 MTF (Magnetic Thin Film)は, 感温フェライトを RF スパッタした後,アニ ーリング処理を施して作製される感温磁性 薄膜であり,その磁気特性が顕著な温度依 存性を有するため,高感度温度センサとし て使用できる^{(3)~(5)}.

本報告は, MTFを用いた微小酵素反応熱 を磁気的に計測するシステムの構成および 基礎特性に関するものである.本システム は,酵素反応熱を磁気的に計測するため, センサ部と信号処理分が分離可能であり, サーミスタ等で構成される従来のセンサシ ステムに対して,より柔軟なシステムを構 成できる.

2.MTFの作製と基礎特性

MTF はスパッタリングとアニーリング の工程を経て作製される . Fig. 1 に MTF の 作製工程を示す 主原料である Fe₂O₃ MnO, ZnO などの金属酸化物を混合し,800 ~ で仮焼成する.これをボールミルを 900 用いて数µm まで粉砕した後,バインダを加 えて加圧成形後,1200 ~ 1400 で4時間 本焼成を行いバルク状の感温フェライト TSF(Temperature-sensitive Ferrite)を作製す る.次に,TSFをターゲットとしてRFスパ ッタリングにより Si 基板 (縦 8.0 mm,横4 mm,厚さ 0.65 mm)上に薄膜を形成する. スパッタは Ar 雰囲気 60 mTorr で 4 時間, RF パワーは 200 W の条件下で行った.

Fig. 2 はアニーリング工程における温度 プロファイルを示す.作製されたスパッタ 薄膜 STF (Sputtered Thin Film)は非晶質で あり,磁性をほとんど生じない.そこで, 結晶構造(スピネル)を再現するため,ア ニーリング処理を施した.アニーリングは Ar 雰囲気中で1000 で8時間熱処理を行 った.また,クラック,剥離の発生を防止 するため,その後,100 /hで10時間徐 冷し,室温まで冷却することでMTFが作製 される.

Fig. 3 は TSF と MTF の金属成分を示す. 測定は X 線マイクロアナライザー(EDX) を用いて行った.TSF と MTF の Fe, Mn お よび Zn の主成分金属組成比(mol%)はそ れぞれ(67.07,14.73,18.20),(67.55,14.75, 17.70)であり,スパッタリングおよびアニ ーリングの前後で組成にはほとんど変化が みられず,MTF は TSF の金属組成を忠実に 再現している.

Fig. 4 は MTF と STF の XRD パターンを

Fig. 1 Preparation profile of MTF.

Fig. 2 Annealing profile.

Fig. 3 Metal components of TSF and MTF.

示す.同図よりアニーリング処理を行わな いSTF はピークが現れず,非晶質を示すが, MTF は(220),(311),(400),(440)面で ピーク値が見られ,これらのピーク値より MTF はスピネル構造を有していることが分 かる.

 Fig. 5 は MTF(試料 1)の磁化ループの

 温度依存性を示す.同図より,MTFの飽和

 磁化は,試料温度が0のとき195 emu/cm³

 を示すが,温度の上昇に伴って減少し,

 30 では75 emu/cm³,60 になると7

 emu/cm³まで低下することがわかる.0 と

 60 の飽和磁化の比は0.04 となり,顕著な

 温度依存性を有する.

 Fig. 6 はキュリー温度の異なる 2 種の

 MTF 試料の飽和磁化の温度特性を示す.両

 試料は、いずれも温度の上昇により飽和磁

 化が減少する傾向が見られる.試料 2 の場

 合、0 で 150 emu/cm³の飽和磁化は 30 で

 48 emu/cm³へと低下し、50 ではほとんど

 消失する.1 当りの磁化の変化量 M_S は

 約 2.2 emu/cm³であった.

3.代謝物センサシステムの構成

MTF の応用として,酵素反応における微 少温度変化を検知する代謝物センサシステ ムを構成した.酵素反応は定常,定温・定 圧下で行われ,その大部分は熱変化,すな わちエンタルピー変化を伴う.この熱変化 を測定装置で検出できれば,容易に反応系 物質を定量できる.また,多成分系であっ ても酵素を受容体として用いることで,そ の厳密な反応特異性から,特定の分子やイ オンを選択的に識別できる.

 Fig. 7 は代謝物センサ MS の測定原理を

 示す.MTF 下部に磁気抵抗素子 MR と永久

Fig. 4 XRD patterns of STF and MTF.

Fig. 5 Magnetization loop of MTF (#1) with temperature change.

magnetization Ms of MTFs, #1 and #2.

磁石 MG を配置し, MTF - MR - MG - MR - MTF なる磁気ループを構成する.MTF上 に基質(試料)をのせ,上部の注入器から 酵素を滴下すると,両者が混合して酵素反 応が起こり発熱する.この発熱により MTF の温度が上昇して磁気特性を変える.この 変化は磁気ループ内の磁束を変化させるた め,MR の抵抗の変化として読み出すこと ができる.

基質と水が関与する反応系における熱変 化量をQとすればQは次式で与えられる.

 $Q = C_s \times T = -n_P \times H \qquad (1)$

ただし,C_sは熱容量, Tは温度変化, n_Pはモル数, Hはエンタルピー変化量で ある.

したがって,反応系の温度変化 Tは

$$T = -n_P \times H/C_s \qquad (2)$$

となる.よって T を測定すれば,特定成 分の濃度を求めることができる.酵素反応 時の温度変化 Tは10⁻¹~10⁻³ オーダー の微少熱であるため,この熱を検出するた め高感度の温度センサが必要となる.そこ で,MTFの磁気の感温特性と酵素の触媒作 用を利用すると,代謝物センサシステムを 構成することができる.

Fig. 8 は, MS を用いた代謝物センサシス テムを示す.試料水溶液を試験管に入れ, この中に MS を設置する.なお,防水のた め,MS はエポキシ樹脂でコーティングを施 した.試験管は,外部からの熱的干渉が少 なくなるように,水を入れたビーカー(容 量 50 ml)内部に設置し,さらに全体を一定 温度(35)に保たれた恒温槽(縦 550 mm, 横 550 mm,高さ 800 mm)内に配置した. 酵素水溶液が入る注入器は,試験管の上方 に設置した.

Fig. 7 Principle of metabolite sensor MS utilizing MTF.

Fig. 8 Metabolite sensor system utilizing MS.

酵素水溶液を注入すると,試験管の試料 溶液と反応してエンタルピー変化を生じ, MS で MTF の磁性の変化は MR の抵抗の変 化となって現れる.抵抗値の変化は信号変 換回路 SC(ブリッジ回路と増幅回路)に導 かれ電気信号に変換され電圧として出力さ れる.なお,ブリッジ回路の印加電圧は 0.2 V である.

Fig.9 は,精製水(5 ml)に対してペニシ リナーゼ酵素溶液(0.01 wt%,0.5 ml)を滴 下した場合の応答特性である.同図より, 精製水へ酵素溶液を滴下した場合には,エ ンタルピー変化を伴わないことから,本シ ステムは応答を示さないことが分かる. 次に酵素反応によるエンタルピー変化を 伴う場合についての応答を,酵素としてペ ニシリナーゼ(0.01 wt%,0.5 ml),反応基 質としてペニシリン GK(5 ml)を用いて測 定を行った.この反応式は次式で与えられ る.また,この反応系のエンタルピー変化 Hは-67.0 kJ/molである.

ペニシリン GK+H₂O ペニシロ酸 (3)

Fig.10 は、ペニシリン GK 溶液の濃度を パラメータとして、ペニシリナーゼ酵素溶 液を滴下した場合の応答特性である.同図 より、ペニシリン GK 溶液の濃度が高くな るに従って、出力電圧のピーク値も増大す ることがわかる.また、いずれの濃度にお いても、パルス状出力電圧発生後、次第に 元の値に戻ることから、本システムが酵素 反応熱をのみ検知していることが分かる.

Fig.11 は、ペニシリン GK 濃度と出力電 圧のピーク値との関係を示す.同図より、 濃度と出力電圧のピーク値との間に良好な 直線関係が得られた.よってこれを検量線 として、出力電圧のピーク値から被測定物 質の定量が可能であることが示された.

Fig.12 はペニシリン GK (5 ml,0.5 × 10⁻² mol/1) に対するペニシリナーゼ酵素とオキ シターゼ酵素(各 0.5 ml,0.01 wt%)の反応 の応答特性を示す.まず,ペニシリン GK 溶液にペニシリナーゼ酵素を滴下すると, 先程と同様にパルス電圧(7.4 mV)が発生 する.続いてオキシターゼ酵素溶液を滴下 すると,応答は得られない.すなわち,ペ ニシリン GK はペニシリナーゼに対しては 鋭敏に反応するが,オキシターゼには全く 反応しないことが分かる.

また, Fig.13 は D-グルコース (5 ml, 0.5

Fig.10 Transient response of penicillinGK to penicillnase enzyme solution.

×10⁻² mol/1) に対して前図と同様に,最初 にペニシリナーゼ,次にオキシターゼ(各 0.5 ml,0.01 wt%)の順で酵素を滴下した場 合の応答特性である.同図より,D-グルコ ースはペニシリナーゼに対しては全く反応 しないが,オキシターゼには鋭敏に反応し, 22.3 mV の出力電圧のピーク値を示すとこ がわかる.これらの結果から,本システム は,各基質が特定の酵素のみに応答し,他 の酵素には応答しないという厳密な反応特 異性を再現することがわかる.

以上より, MTF を用いた代謝物センサ MS は, 被測定物質に対し, 特定の酵素に反応して発熱し, 鋭いパルス電圧を発生させ, そのピーク値は, 試料や酵素の種類そして 濃度によって, 種々変化することが分かった.

4. 結言

以上,スパッタ法による磁性薄膜MTFの 作製と,MTFを用いた代謝物センサシステ ムの構成及び基礎特性について報告した.

MTFは,感温フェライトをターゲットと し,シリコン基板上にRFスパッタリングし た薄膜に,アニーリング処理を施すことで 作製される.MTFの磁性は顕著な温度依存 性を有し,温度が上昇すると磁化が減少す る傾向を示し,高感度温度センサとしての 機能を有している.

MTFの応用として酵素反応熱を検知する 代謝物センサシステムを構成し,滴下法に より各種の試料に対して酵素反応試験を試 みたところ,各反応熱に応じたパルス状電 圧が得られた.パルス状電圧のピーク値は 測定物質の濃度に依存しており,濃度が高 いほどパルスのピーク値が大きくなった. 従来の代謝物センサとしてサーミスタの電 気特性を用いたものが知られているが,本 方式は熱による磁気特性の変化を利用した

Time (100 sec/div)

Fig.12 Transient response of penicillinGK to penicillinase and oxidase enzyme solution.

Fig.13 Transient response of D-glucose to penicillinase and oxidase enzyme solution.

ものであり、今後の展開が期待できる.

参考文献

- (1) 二木:"感温半導体", 産報出版(1988)
- (2) B. Danielsson: "The Enzyme Thermistor", Applied Biochemistry and Bioechnology, 7, 127-134 (1982)
- (3)長田,安宍,菊池,田山,関,菊地,"感 温磁性薄膜センサの作製と基礎特性", 日本応用磁気学会誌,202,pp. 565-568 (1996)
- (4) 石井,安宍,島津,長田,千葉,菊池, 関,"スパッタ法による感温磁性薄膜の 作製と特性評価",計測自動制御学会東 北支部第 160 回研究集会,160-5 (1996)
- (5) 安宍,長田,千葉,田山,関,"感温磁 性薄膜センサの磁気特性とその熱処理 効果",第21回日本応用磁気学会学術 講演会,2aE-12(1997)