計測自動制御学会東北支部 第187回研究集会 (2000.6.2) 資料番号 187-3

分散演算を用いたLMS適応フィルタの収束条件

Convergence Condition Analysis of LMS Adaptive Filters Using Distributed Arithmetic

○高橋 強*, 恒川佳隆**, 田山典男**, 関 享士郎**

OKyo Takahashi*, Yoshitaka TSUNEKAWA**, Norio TAYAMA**, Kyoushirou SEKI**

*岩手県立産業技術短期大学校, **岩手大学

*Iwate Industrial Technology Junior College, **Iwate University

キーワード: 分散演算 (distributed arithmetic), LMSアルゴリズム (LMS algorithm), 適応関数空間 (adaptive function space), 収束条件 (convergence condition), オフセット (offset)

連絡先: 〒028-3615 岩手県紫波郡矢巾町大字南矢幅10-3-1 岩手県立産業技術短期大学校電子技術科 高橋 強, Tel.:(019)-697-9082,Fax.:(019)-697-9089, E-mail:kyo@iwate=it.ac.jp

1. はじめに

現在、適応フィルタはエコーキャンセラ、ノイズ キャンセラ、自動等化器など応用範囲は広く、様々 な分野で実現の必要性が高まっている、適応フィル タを実現する際には高速性、低消費電力、良好な 収束特性、小さな出力滞在時間(Latency)など様々 な性能が要求されるが、これらを同時に満足する ことは非常に困難でありより効率的な実現法が望 まれている.また、TV会議などで必要な音響エ コーキャンセラにおいては、室内音場のインパル ス応答を高速に推定する能力とインパルス応答変 動に対する追従性が要求される⁸⁾.そのため、非 常に高次の適応フィルタが必要とされている.

これまでCowanらは、低消費電力、小規模ハー ドウエアを実現するために乗算器を用いない、い わゆるマルチプライヤレスな構成法として分散演 算 (Distributed Arithmetic)を用いた適応フィルタ を提案した¹⁾²⁾³⁾⁴⁾.従来、この分散演算は定 係数の内積演算を効率的に計算する方法として知 られていたが、入力信号の符号化にオフセットバ イナリ形式を用いると部分積を格納する関数空間 が奇対称性を有し、この性質を利用して関数空間 を構成するためのメモリ容量を1/2に削減することが可能である。ところが2の補数形式ではこの 性質は現れないため、関数空間の奇対称性はオフ セットバイナリ形式に特有の性質である者されて きた¹⁰⁾¹¹. Cowanらはこの性質を利用するため にオフセットバイナリ形式を用いた分散演算を適 応フィルタに適用したが、収束速度が極端に劣化 することが我々の計算機シミュレーションによって 明らかになり、その原因は入力信号の符号化方式 にあることを示した。⁵⁾⁹.

そこで、我々は一般的な符号化方式である2の 補数形式を用いて分散演算型LMS適応フィルタの アルゴリズムを統一的に展開することにより、収 東速度を大幅に改善することを可能にした⁵⁾⁶⁾ 9).また、定係数の分散演算では現れなかった適応 関数空間の奇対称性を初めて見出し、この性質を 利用したハーフメモリアルゴリズムを提案し、さ らに効率的なVLSIアーキテクチャを提案してき た.我々の構成法では、次数に対して高速性と滞 在時間をほぼ一定に保った上で、低消費電力、小 規模ハードウエアを実現することが可能である. しかし、分散演算型LMS 適応フィルタの収束速度 に関する解析はこれまで行われてこなかった.

本報告では、分散演算型LMS 適応フィルタ (DA 適応フィルタ)の収束速度について解析的に明らか にする⁷⁾、まず、分散演算型LMS 適応フィルタの 更新式を適応関数空間全体に対する更新式に拡張 する. 拡張された更新式はもとの更新式と等価で あり、これをLMSアルゴリズムと比較することに よって適応関数空間全体に対する入力信号ベクト ルを新たに定義する.次に、拡張した更新式に対 する分散演算型LMS適応フィルタの収束式と収束 条件を導出する.これにより、収束速度は新たに 定義した入力信号ベクトルの自己相関行列の固有 値分布に依存することを明かにする、次に、新た に定義した入力信号ベクトルの性質を検討するこ とにより、従来法の収束速度が大幅に劣化する原 因について述べる。さらに、有色性の入力信号に 対する収束特性についても検討した。その結果。 分散演算型LMS 適応フィルタは有色性の影響を低 減する一種の白色化効果を有することが明らかに なった.

2. 分散演算型 LMS 適応フィルタ

分散演算は定係数の内積演算を効率的に行う ための計算手法として用いられてきたが、係数が 時変となる適応信号処理においても有効な演算手 法となる。

2.1 従来法の更新式の導出

従来法においては、入力信号s(k)の符号化には オフセットバイナリ形式を用いるとされてきた¹⁾ 2 ^{3) 4)}.このとき、N次入力信号ベクトルS'(k)は以下の式で表される.

$$S'(k) = [s'(k), s'(k-1), \cdots, s'(k-N+1)]^{T}(1)$$

= $A'(k) F'$ (2)

上式において,アドレスマトリクス A'(k) は

$$A'(k) =$$

$$\begin{bmatrix} b'_{0}(k) & b'_{0}(k-1) & \cdots & b'_{0}(k-N+1) \\ b'_{1}(k) & b'_{1}(k-1) & \cdots & b'_{1}(k-N+1) \\ \vdots & \vdots & \ddots & \vdots \\ b'_{B-1}(k) & b'_{B-1}(k-1) & \cdots & b'_{B-1}(k-N+1) \end{bmatrix}^{T}$$
また、アドレスマトリクスの各列

$$A'_{vi}(k) = [b'_i(k), b'_i(k-1), \cdots, b'_i(k-N+1)]^T$$
$$i = 0, 1, \cdots, B-1$$

をアドレスベクトルと呼び、スケーリングベクト ルF'は

$$F' = [2^{-1}, 2^{-2}, \cdots, 2^{-B}]^T$$
(3)

である.ここで,アドレスマトリクスとアドレス ベクトルの要素は入力信号を構成するオフセット バイナリ形式におけるビットを表し,-1,1の値を 持つ.

タップ数Nの係数ベクトルを

$$m{W}(k) = [w_0(k), w_1(k), \cdots, w_{N-1}(k)]^T$$

とすると、フィルタ出力を求める式は次式で表される.

$$y'(k) = S'^{T}(k) W(k) = F'^{T} A'^{T}(k) W(k)$$
 (4)

更新式を導出する、LMSアルゴリズムは以下 の式で表される。

$$W(k+1) = W(k) + 2\mu e'(k) S'(k)$$
 (5)

ここで、e'(k)は所望信号d(k)とフィルタ出力y'(k)の差を表す誤差信号

$$e'(k) = d(k) - y'(k)$$
 (6)

である. (5)式の両辺に左から $A^{T}(k)$ を掛け,

$$A^{T}(k) W(k+1) =$$

$$A^{T}(k) \{ W(k) + 2\mu e'(k) A'(k) F' \} (7)$$

次に、 $A'^{T}(k) W(k) \ge A'^{T}(k) W(k+1) \varepsilon$,

$$P'(k) = A'^{T}(k) W(k)$$
(8)

$$= [p'_0(k), \cdots, p'_{B-1}(k)]^T$$
(9)

$$P'(k+1) = A'^{T}(k) W(k+1)$$
(10)

 $= [p'_0(k+1), \cdots, p'_{B-1}(k+1)]^T (11)$

と定義することにより、(7)式は

$$\mathbf{P}'(k+1) = \mathbf{P}'(k) + 2\mu e'(k) \mathbf{A}'^{T}(k) \mathbf{A}'(k) \mathbf{F}'$$
(12)

となる.ここで、入力信号が平均0の白色雑音であると仮定すると(12)式の $A'^{T}(k)A'(k)$ の平均値は、

$$E[\mathbf{A}^{\prime T}(k)\mathbf{A}^{\prime}(k)] = N\mathbf{I}$$
(13)

となる. なお、Iは $B \times B$ の単位行列である. 更 新式は、(12)式の $A'^{T}(k)A'(k)$ を(13)式で置き換 えて

$$P'(k+1) = P'(k) + 2\mu e'(k)NF'$$
(14)

と簡略化される.ここで、P'(k)はアドレスベクトル $A'_{vi}(k)$ を引数として部分積を返す関数で適応

関数空間と呼ばれる.LMS 適応フィルタでは,(5) 式のように係数ベクトルW(k)の要素 $w_i(k)$ を更新 するのに対し,DA 適応フィルタでは(14)式のよう に適応関数空間P'(k)の要素 $p'_i(k)$ を更新する.こ の適応関数空間はRAM(Random access memory) を用いて実現されるが,空間要素の指定はアドレ スベクトル $A'_{vi}(k)$ をRAMのアドレス信号として 用いて行うため、アルゴリズムの導出過程で-1,1 としていたビット値は0,1として用いられること になる.また,(9)式を用いると(4)式のフィルタ 出力は、

$$y'(k) = F'^{T} P'(k)$$
(15)
= 2⁻¹× p'_{0}(k) + ... + 2^{-B} × p'_{B-1}(k)(16)

と表される.

従来法では、アルゴリズム導出が容易であるこ とと適応関数空間の奇対称性を利用するためにオ フセットバイナリ形式を用いた。しかし、我々の 検討によりこの符号形式が原因となり収束速度が 極端に劣化することが明らかになった⁵⁾⁹⁾.

2.2 提案法の更新式の導出

従来法の問題点を解決するために,我々は符号 化方式に2の補数形式を用いて分散演算型LMSア ルゴリズムを導出した⁵⁾⁶⁾⁹⁾.

N次入力信号ベクトルを

$$S(k) = [s(k), s(k-1), \cdots, s(k-N+1)]^T$$

タップ数Nの係数ベクトルを

 $W(k) = [w_0(k), w_1(k), \cdots, w_{N-1}(k)]^T$

とすると、フィルタ出力は次式で表される.

$$y(k) = \boldsymbol{S}^{T}(k) \boldsymbol{W}(k) = \boldsymbol{F}^{T} \boldsymbol{A}^{T}(k) \boldsymbol{W}(k) \quad (17)$$

 $S(k) = A(k) F \tag{18}$

上式において,アドレスマトリクス A(k) とスケー リングベクトル**F**は

$$A(k) =$$

$$\begin{bmatrix} b_0(k) & b_0(k-1) & \cdots & b_0(k-N+1) \\ b_1(k) & b_1(k-1) & \cdots & b_1(k-N+1) \\ \vdots & \vdots & \ddots & \vdots \\ b_{B-1}(k) & b_{B-1}(k-1) & \cdots & b_{B-1}(k-N+1) \end{bmatrix}^T$$

$$m{F} = [-2^0, 2^{-1}, \cdots, 2^{-(B-1)}]^T$$

$$egin{aligned} m{A}_{vi}(k) &= [b_i(k), b_i(k-1), \cdots, b_i(k-N+1)]^T\ &i=0,1,\cdots,B-1 \end{aligned}$$

である.提案法の更新式は、LMSの更新式の両辺 に左から $A^{T}(k)$ を掛け、

$$A^{T}(k) W(k+1) = A^{T}(k) \{ W(k) + 2\mu e(k) A(k) F \}$$
(19)

となる.ここで、誤差信号 e(k) は

$$e(k) = d(k) - y(k) \tag{20}$$

である.ここで、適応関数空間を次のように定義 する.

$$\boldsymbol{P}(k) = \boldsymbol{A}^{T}(k) \boldsymbol{W}(k)$$
(21)

$$= [p_0(k), \cdots, p_{B-1}(k)]^T$$
(22)

$$P(k+1) = A^{T}(k) W(k+1)$$
(23)

$$= [p_0(k+1), \cdots, p_{B-1}(k+1)]^T (24)$$

これより、(19)式は

$$\boldsymbol{P}(k+1) = \boldsymbol{P}(k) + 2\mu \boldsymbol{e}(k) \boldsymbol{A}^{T}(k) \boldsymbol{A}(k) \boldsymbol{F} \quad (25)$$

となる. (22) 式を用いて, (17) 式のフィルタ出力は,

$$y(k) = \boldsymbol{F}^T \boldsymbol{P}(k) \tag{26}$$

と表される.そして,これまで2の補数形式では 不可能とされてきた $A^{T}(k) A(k)$ の対角化をスケー リングベクトルFも含めて考えることにより初め て可能にした⁹⁾.入力信号が平均0の白色雑音で あると仮定すると,(25)式における $A^{T}(k) A(k) F$ の平均値は,

$$E[\mathbf{A}^{T}(k)\mathbf{A}(k)\mathbf{F}] = 0.25N\mathbf{F}$$
(27)

となり、更新式は(25)式中の $A^{T}(k) A(k) F \varepsilon$ (27) 式で置き換えて

$$P(k+1) = P(k) + 0.5\mu Ne(k) F$$
(28)

と簡略化される. この更新式を用いた場合にも, 多くの計算機シミュレーションにより収束するこ とが確認されている⁹⁾. (28)式の更新値は0.5µN を2のべき乗で近似することにより, 誤差e(k)に 対するシフト操作のみで求めることができる. し たがって, 乗算器を使用しないいわゆるマルチプ ライヤレスのハードウェア実現が可能となる. DA 適応フィルタの構成を Fig. 1 に示す.

Fig. 1 Block diagram of DA adaptive filter.

Fig. 2 Computer simulation model.

3. DA 適応フィルタの収束速度

計算機シミュレーションにより収東速度を検討 する.シミュレーションモデルを Fig. 2 に示す. ここで、未知系はタップ数16の低域通過FIRフィ ルタ,入力信号は平均零の白色ガウス雑音である. 入力信号の分散0.1,0.05,0.01に対する提案法のシ ミュレーション結果を Fig. 3, 従来法を Fig. 4 に 示す.ここで、ステップサイズパラメータμは最も 高速な収束速度を示す値を最適値として選択した. ステップサイズパラメータの値をTable 1に示す. これらより、従来法が収束するまでには、提案法 に比較して分散0.1で約6倍,0.05で約13倍そして 0.01では約50倍の繰り返しが必要である.また、 最適なステップサイズは入力信号の分散には関係 せず一定の値を示していることがわかる. これに 対して提案法のステップサイズは、分散に応じて 最適値が変化しており、いずれの分散に対しても 良好な収束速度を示している.

Table 1Step size parameter used in the computersimulation.

Input variance	0.1	0.05	0.01
Proposed method	0.25	0.5	4.0
Conventional method	0.125	0.125	0.125

Fig. 3 Convergence properties of our proposed method for various variance of input signal.

Fig. 4 Convergence properties of conventional method for various variance of input signal.

次に、タップ数4、8、16に対する提案法のシ ミュレーション結果を Fig. 5 に、従来法の結果 を Fig. 6 に示す.なお、入力信号は分散0.01の白 色ガウス雑音である.これらより、従来法はタップ 数を増加させると収束速度が極端に劣化し、タップ 数N=4で約16倍、N=8で約20倍そしてN=16では約56倍もの繰り返しを必要とする.いずれの 場合も、従来法に比べて提案法は良好な収束速度 を示しており、数多くの例においても同様の結果 が得られることを確認している.

さらに、有色信号に対するシミュレーション結 果を Fig. 7 に示すが、提案法はLMSよりも高速な 収束を示していることがわかる.なお、入力信号 は係数0.99の1次AR過程で分散は0.01である.

4. 収束条件の導出

分散演算型LMS適応フィルタは未知システム の伝達関数を適応関数空間として推定するため、 収束条件式は全適応関数空間を対象にする必要が ある.しかし、更新式である(14)式と(28)式は、あ る時刻kにおいて更新対象となる要素のみを記述

Fig. 5 Convergence properties of proposed method for various tap number N.

Fig. 6 Convergence properties of conventional method for various tap number N.

しているため、これまでの更新式では全適応関数 空間に対する収束条件を導くことはできない。そ こで、まず分散演算型LMS適応フィルタの更新式 を全適応関数空間に拡張し入力信号ベクトルを新 たに定義する。ついで、推定誤差を適応関数空間 の最適値と推定値の差として収束条件式を定式化 することにより、収束条件を時刻kの経過ととも に推定誤差が減少するための条件として導く。

4.1 更新式の全空間への拡張

更新式を全適応関数空間に対して拡張し、拡張 された入力信号ベクトルを新たに定義する。

まず、タップ数Nが1の場合について適応関数 空間全体を更新する入力信号を定義する.2の補 数形式を用いる提案法において、一例として入力 信号 *s*(*k*) が

$$s(k) = 0 \times (-2^{0}) + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
(29)

の場合, ビット0, 1に対応する適応関数空間要素 p0(k), p1(k)は提案法の更新式を用いて次のよう に更新される.

$$p0(k+1) = p0(k) + 0.5\mu Ne(k)[-2^{0}+2^{-2}]$$

= p0(k) + 0.5\mu Ne(k)\overline{k}(k) (30)
p1(k+1) = p1(k) + 0.5\mu Ne(k)[2^{-1}+2^{-3}]

Fig. 7 Convergence properties of proposed , conventional and LMS methods for colored signal using an AR process of order 1.

Table 2Relation between symbols and bit pat-terns.

Symbol	Bit pattern	Symbol	Bit pattern
a	$[00]^T$	с	$[10]^{T}$
Ь	$[01]^{T}$	d	$[11]^{T}$

$$= p1(k) + 0.5\mu Ne(k)s(k)$$
(31)

ここで、 $\bar{s}(k)$ はs(k)のビットパターンを反転した 信号を表す.このように、適応関数空間要素p0(k)、 p1(k)はそれぞれ入力信号 $\bar{s}(k)$ 、s(k)により更新さ れることがわかる.任意の入力信号に対して、更 新式は(30)式と(31)式をまとめて、

$$P_{w}(k+1) = P_{w}(k) + 0.5\mu e(k) S_{DA}(k) (32)$$

 $S_{DA}(k) = N[\bar{s}(k), s(k)]^T$ (33)

$$P_w(k) = [p0(k), p1(k)]^T$$
 (34)

となる.このように,適応関数空間全体は新たな入力信号ベクトル*S_{DA}(k)*によって更新されている.

次にタップ数Nが2の場合について検討する. 入力信号ベクトルを

$$S(k) = [s(k), s(k-1)]^{T}$$
(35)

とする. ここで, 信号s(k), s(k-1)を構成するビットは"0"と"1"の2値を持つため, 適応関数空間要素 を指定するアドレスベクトル $A_{vi}(k)$ の種類は, "0" と"1"の組み合わせ数の 2^N 種類存在する. タップ 数2では4種類のアドレスベクトルが存在するため, それらをTable 2のようにアルファベットで表 して区別することにする.

今,一例として入力信号の組み合わせが以下の 場合について考える.

$$s(k) = 1 \times (-2^{0}) + 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

Table	3	Access	pattern	of	adaptive	function
space.						

Symbol	Bit pattern	-2°	2-1	2^{-2}	2-3
a	$[00]^T$	0	0	1	0
ь	$[01]^{T}$	0	1	0	0
c	$[10]^{T}$	1	0	0	0
d	$[11]^{T}$	0	0	0	1

$$s(k-1) = 0 \times (-2^0) + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$

この入力信号ベクトルをシンボルを用いて表すと、 $S_s = c \times (-2^0) + b \times 2^{-1} + a \times 2^{-2} + d \times 2^{-3}$ (36)

となる. なお, 語長を4[bit] とし, 入力信号は4種類 の全パターンが現れるビットパターンを選択した.

この場合,適応関数空間は提案法の更新式を用いて次のように更新される.

$$pa(k+1) = pa(k) + 0.5\mu \times 2 \times e(k)2^{-2} (37)$$

$$pb(k+1) = pb(k) + 0.5\mu \times 2 \times e(k)2^{-1} (38)$$

$$pc(k+1) = pc(k) - 0.5\mu \times 2 \times e(k)2^{0} (39)$$

$$pd(k+1) = pd(k) + 0.5\mu \times 2 \times e(k)2^{-3} (40)$$

(37) 式~(40) 式をまとめると,

$$\boldsymbol{P}_{w}(k+1) = \boldsymbol{P}_{w}(k) + 0.5\mu Ne(k) \, \boldsymbol{A}_{ac}^{T}(k) \, \boldsymbol{F} \ (41)$$

となる。ここで、各適応関数空間と更新に寄与するスケーリングベクトル要素との対応関係をTable 3に示す。(41)式の $A_{ac}^{T}(k)$ はTable 3に相当し、この場合は以下に示す 4×4 のマトリクスである。

$$\boldsymbol{A}_{ac}(k) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{T}$$
(42)

この行列は、入力信号ベクトルのビットパターン により一意に決定され、これをアクセスマトリク スと呼ぶことにする.また適応関数空間 $P_w(k)$ は

$$\boldsymbol{P}_{w}(k) = [pa(k), pb(k), pc(k), pd(k)]^{T}$$
(43)

である.

これを,任意の入力信号ベクトルに対してタップ数Nに一般化すると,

$$P_{w}(k+1) = P_{w}(k) + 0.5\mu e(k) S_{DA}(k) \quad (44)$$

$$S_{DA}(k) = N A_{ac}^{1}(k) F \qquad (45)$$

$$= [s_{DA,0}(k), \cdots, s_{DA,2} "_{-1}(k)]^T (46)$$

となる.ここで、 $A_{ac}^{T}(k)$ は $2^{N} \times B$ のアクセスマトリクス、適応関数空間 $P_{w}(k)$ は

$$\boldsymbol{P}_{w}(k) = [p_{0}(k), p_{1}(k), \cdots, p_{2^{N}-1}(k)]^{T} \qquad (47)$$

スケーリングベクトルは,

$$F = [-2^0, 2^{-1}, \cdots, 2^{-B+1}]^T$$
(48)

である.また,出力信号y(k)は

$$y(k) = \boldsymbol{F}^T \boldsymbol{A}_{ac}(k) \boldsymbol{P}_w(k) \qquad (49)$$

$$= \frac{1}{N} S_{DA}^T(k) P_w(k) \tag{50}$$

となる. (44) 式とLMSアルゴリズムの(5) 式を比較すると、 $S_{DA}(k)$ はLMSアルゴリズムにおける入力信号ベクトルS(k)に相当しており、適応関数空間の更新値を決定する入力信号ベクトルである.

従来法の更新式も同様の過程により導かれる ため、ここでは結果のみを示す.

$$P'_{w}(k+1) = P'_{w}(k) + 2\mu e'(k) S'_{DA}(k)$$
 (51)

$$\boldsymbol{S}_{\boldsymbol{D}\boldsymbol{A}}^{\prime}(k) = N \boldsymbol{A}_{\boldsymbol{a}\boldsymbol{c}}^{\prime T}(k) \boldsymbol{F}^{\prime}$$
(52)

$$= [s'_{DA,0}(k), \cdots, s'_{DA,2^{N}-1}(k)]^{T}(53)$$

ただし、入力信号の各ビットは値0,1である.ここで、 $A_{ac}^{\prime T}(k)$ は $2^{N} \times B$ のアクセスマトリクス、適応関数空間 $P'_{w}(k)$ は

$$\boldsymbol{P}'_{w}(k) = [p'_{0}(k), p'_{1}(k), \cdots, p'_{2^{N}-1}(k)]^{T} \qquad (54)$$

スケーリングベクトルは,

$$\mathbf{F}' = [2^{-1}, 2^{-2}, \cdots, 2^{-B}]^T$$
(55)

である. また, 出力信号 y'(k) は

$$y'(k) = \mathbf{F}'^T \mathbf{A}'_{ac}(k) \mathbf{P}'_w(k)$$
(56)

$$= \frac{1}{N} S_{DA}^{\prime T}(k) P_{w}^{\prime}(k)$$
 (57)

となる.

これまで、DA適応フィルタにおける入力信号 は適応関数空間を指定するために用いられると解 釈されていた.しかし、我々は適応関数空間の更 新状況を表すアクセスマトリクス A_{ac}(k)を導入し て、これまでの更新式を全適応関数空間に拡張し た.これによりDA適応フィルタは、(44)式、(46) 式と(51)式、(53)式のように、入力信号 S_{DA}(k)、 S'_{DA}(k)を用いて適応関数空間を更新することが 示された.

4.2 収束条件の導出

まず,提案法の更新式である(44)式に出力計算 式の(50)式を代入して,

$$P_{w}(k+1) = P_{w}(k) + 0.5\mu e(k) S_{DA}(k) \quad (58)$$
$$= P_{w}(k) + 0.5\mu S_{DA}(k)$$

$$[d(k) - \frac{1}{N} S_{DA}^{T}(k) P_{w}(k)] (59)$$

= $P_{w}(k) + 0.5 \mu d(k) S_{DA}(k)$
 $-0.5 \frac{1}{N} \mu S_{DA}(k) S_{DA}^{T}(k) P_{w}(k)$ (60)

$$= [I - 0.5 \frac{1}{N} \mu S_{DA}(k) S_{DA}^{T}(k)] P_{w}(k) + 0.5 \mu d(k) S_{DA}(k)$$
(61)

となる.ここで、行列Iは $2^N \times 2^N$ の単位行列である.さて、適応関数空間の最適値を P_w^* とし適応関数空間観差ベクトルc(k)を次のように定義する.

$$c(k) = \boldsymbol{P}_{\boldsymbol{w}}(k) - \boldsymbol{P}_{\boldsymbol{w}}^{\star} \tag{62}$$

この関係を用いて、(61)式は

$$P_{w}(k+1) = [I - 0.5\frac{1}{N}\mu S_{DA}(k) S_{DA}^{T}(k)] \times [c(k) + P_{w}^{*}] + 0.5\mu d(k) S_{DA}(k) \quad (63)$$

$$= [I - 0.5\frac{1}{N}\mu S_{DA}(k) S_{DA}^{T}(k)] c(k) + P_{w}^{*}$$

$$- 0.5\mu [\frac{1}{N} S_{DA}(k) S_{DA}^{T}(k) P_{w}^{*} - d(k) S_{DA}(k)] \quad (64)$$

となり、両辺から P_w^* を引いて、

$$P_{w}(k+1) - P_{w}^{*}$$

$$= [I - 0.5\frac{1}{N}\mu S_{DA}(k) S_{DA}^{T}(k)] c(k)$$

$$+ 0.5\mu[d(k) S_{DA}(k) - \frac{1}{N} S_{DA}(k) S_{DA}^{T}(k) P_{w}^{*}]$$

$$c(k+1) = [I - 0.5\frac{1}{N}\mu S_{DA}(k) S_{DA}^{T}(k)] c(k)$$

$$+ 0.5\mu[d(k) S_{DA}(k) - \frac{1}{N} S_{DA}(k) S_{DA}^{T}(k) P_{w}^{*}]$$
(65)

となる. ここで両辺の期待値をとり、 $c(k) \ge S_{DA}(k)$ は直交原理¹²⁾により独立であると仮定すると、

1

$$\begin{split} E[c(k+1)] &= E[[I-0.5\frac{1}{N}\mu S_{DA}(k) S_{DA}^{T}(k)]c(k)] & \qquad D^{A}cO(k), c \in \mathcal{O}, c \in \mathcal{$$

となる. なお,

$$q = E[d(k) S_{DA}(k)]$$
(67)

$$\boldsymbol{R} = E[\boldsymbol{S}_{DA}(k) \boldsymbol{S}_{DA}^{T}(k)]$$
(68)

とおいた.しかし,正規方程式(導出過程を付録 に示す)は

$$\boldsymbol{q} = \frac{1}{N} \boldsymbol{R} \boldsymbol{P}_{w}^{*} \tag{69}$$

どなるので、(66)式の右辺第2項は零となり

$$E[c(k+1)] = [I - 0.5\frac{1}{N}\mu R]E[c(k)] (70)$$

= [I - \mu_a R]E[c(k)] (71)

と簡略化される。なお、

$$\mu_a = \frac{0.5}{N}\mu\tag{72}$$

とおいた. この式は適応関数空間誤差ベクトルc(k)の更新式を表しており、時刻kが経過するにつれてc(k)が減少するかどうかは μ_a およびRに依存していることがわかる. この性質を明確にするために、

$$\boldsymbol{R} = \boldsymbol{Q} \boldsymbol{D} \boldsymbol{Q}^T \tag{73}$$

と変形する.ただし、**Q**は**R**の固有ベクトルを列 ベクトルに持つ直交行列

$$\boldsymbol{Q}^T = \boldsymbol{Q}^{-1} \tag{74}$$

また、DはRの固有値を対角要素とする対角行列

$$D = Diag(\lambda_1, \lambda_2, \cdots, \lambda_{2N})$$
(75)
$$(\lambda_1 \le \lambda_2 \le \cdots \le \lambda_{2N})$$

である.したがって、(71)式は

$$E[c(k+1)] = Q[I - \mu_a D] Q^T E[c(k)]$$
 (76)

となる.(76)式より,時刻kが経過するにつれて適応関数空間誤差E[c(k)]が減少するための条件は

$$0 < \mu_a < \frac{1}{\lambda_{max}} \tag{77}$$

となる.ここで、 λ_{max} はRの最大固有値である. 従来法の収束条件も提案法と同様の過程で導 かれるため、ここでは結果のみを示す.適応関数 空間誤差ベクトルd(k)の更新式は、

$$E[c'(k+1)] = [I - 2\frac{1}{N}\mu' R']E[c'(k)] (78)$$

= [I - \mu_a' R']E[c'(k)] (79)

 $c'(k) = P'_{w}(k) - P'^{*}_{w}$ (80)

μ_{c}^{\prime}		(81)	
たがって,	(79)式よ	り収束条件は,	

Variance of eigen value of autocorrelation

Proposed

4.47e-4

2.72e-5

2.68e-6

Conventional

0.149

0.375

0.764

2,

$$0 < \mu_a' < \frac{1}{\lambda_{max}'} \tag{82}$$

となる.ここで、 λ'_{max} はR'の最大固有値である.

提案法と従来法のいずれの場合も、新たに定義した入力信号ベクトルの自己相関行列 **R**, **R**'の 固有値分布が小さいほど高速な収束速度を示すた め、提案法や従来法の固有値分布を検証すること により収束速度を評価することができる。

5. 収束速度の評価

Table 4

matrix.

Input variance

0.10

0.05

0.01

である.し

5.1 収束速度の劣化要因

計算機シミュレーションにより、タップ数 N=6 に対する拡張された入力信号ベクトルの自己相関 行列の固有値分散を求めた結果をTable 4に示す。 なお、入力信号は白色ガウス信号で分散は0.10,0.05、 0.01である.これより従来法の分散は非常に大き く、また入力信号の分散を小さくすると固有値分 散が大きくなるという負の相関を有する.これに 対して、提案法の固有値分散は非常に小さく、ま た入力信号の分散を小さくすると固有値分散も小 さくなるという正の相関を有していることがわか る. 前章において、分散演算型LMS適応フィルタ の収束速度は拡張された入力信号の固有値分布が 小さいほど高速な収束速度を示すことを示したが、 Table 4より提案法は従来法よりも固有値の分散つ まり分布が小さいため高速な収束速度を有するこ とになる.

従来法の固有値分散が大きくなる原因は、入力 信号の符号化方法にある. 簡単のためにタップ数 N=1, 語長4bitとし信号値-0.1875が入力された 場合について考える. 拡張されたDA 適応フィル タの入力信号ベクトル*S'_{DA}(k)*は

$$\mathbf{S}_{DA}'(k) = N \mathbf{A}_{ac}'^{T}(k) \mathbf{F}'$$
(83)

- 8 --

Tap number	Conventional	Proposed
2	2.0	0.0
3	3.0	0.0
4	4.0	0.0
5	5.0	0.0

Fig. 8 Relation between input signal and coded signal.

$$\begin{bmatrix} s'_{DA,0}(k) \\ s'_{DA,1}(k) \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} F'$$
$$= \begin{bmatrix} 0.5625 \\ 0.3750 \end{bmatrix}$$
(84)

となり値が大きく異なる. タップ数 N = 1に対する, 入力信号と符号化された入力信号の関係を Fig. 8 に 示す. これより、従来法の符号化方式では入力信 号が負であっても符号化後は正の値として表現さ れている.このことは、平均0の入力信号を符号 化しても平均値は0とはならずにオフセット値を 有することを意味する.これに対して2の補数形 式では正負の値が表現可能であるためオフセット 値は0となる. タップ数 N=2,3,4,5 に対する入力 信号ベクトルの平均値の総和を計算機シミュレー ションにより求めた結果をTable 5に示す、なお、 入力信号は平均0,分散0.1の白色ガウス信号であ る.これより、従来法ではタップ数Nが増加する にしたがいオフセット値が増加している。ある入 力信号要素に対するオフセット値は、その要素を アクセスする確率を1/2^Nとすると(83)式より

$$N\{\frac{1}{2^N} \times 2^{-1} + \frac{1}{2^N} \times 2^{-2} + \dots + \frac{1}{2^N} \times 2^{-B}\}$$

$$= \frac{N}{2^N} \sum_{i=1}^B 2^{-i} \approx \frac{N}{2^N}$$

となるため、2^N要素の総和は

$$\frac{N}{2^N} \times 2^N = N \tag{85}$$

となりTable 5に一致する.これに対して提案法は

$$N\{\frac{1}{2^{N}} \times (-2^{0}) + \frac{1}{2^{N}} \times 2^{-1} + \dots + \frac{1}{2^{N}} \times 2^{-B+1}\}$$
$$= \frac{N}{2^{N}} \{-2^{0} + \sum_{i=1}^{B-1} 2^{-i} \approx 0$$

となり、タップ数Nに依存せず0である.

従来法において固有値の分散が大きくなる原因は、入力信号がオフセットを有するために自己 相関行列の固有値の一つが他に比べて非常に大き くなるためである¹³⁾.したがって、(82)式の表す 収束を保証するステップサイズパラメータの上限 はこの最大固有値で制限されるため、他の小さい 固有値に対する収束が極端に遅くなる.しかし、 提案法では固有値がほぼ同程度の値となりステッ プサイズパラメータに対して全ての固有値が同等 の収束を示すために良好な収束速度を有する.

5.2 有色信号に対する収束速度

有色性を有する入力信号について、自己相関行 列の固有値の分散を求めた結果をTable 6に示す. ここで有色信号は係数0.99の1次AR過程を用い ており、未知システムのタップ数 N=4である. こ れより、提案法の固有値の分散が最も小さいこと がわかる。この原因は、DA 適応フィルタとLMS 適 応フィルタにおける入力信号の取り扱いが異なる ためである.LMS 適応フィルタと DA 適応フィルタ の入力信号の関係を Fig. 9 に示す。LMS適応フィ ルタは連続して入力される信号 s(k) ~ s(k-N+1) を入力信号ベクトルとして用いるが,信号の有色 性は連続するサンプル間の相関であるため、LMS 適応フィルタの入力信号は有色性の影響を直接受 ける.これに対して、DA 適応フィルタの入力信号 はアドレスベクトルのビットパターンにより入力 信号が決定される。この場合、有色性信号に対して も下位ビット程0と1がランダムに生起するため、 $S_{DA}(k)$ の有色性は軽減される. その結果,提案 法における固有値の分散はLMSよりも小さくなり 高速な収束速度を示すのである。従来法において も有色性が軽減される白色化の効果は提案法と同 様であるが、入力信号のオフセットによって自己 相関行列の固有値の分布が大きいため有色信号に 対しても収束速度は大きく劣化する.

Table 6Variance of eigen value of autocorrelationmatrix for colored process.

Variance	LMS	Conventional	Proposed
0.10	5.90e-4	9.08e+1	4.13e-4
0.05	1.48e-4	9.50e+1	1.03e-4
0.01	5.90 e- 6	1.01e+2	4.13e-6

Fig. 9 Difference of input signal vector between LMS and DA.

あとがき

本報告では、これまで行われていなかった分散 演算型LMS 適応フィルタの収束速度について解析 的に検討した. そのために, まず分散演算型LMS 適応フィルタの更新式を適応関数空間全体に対す る更新式に拡張し、この更新式をLMSアルゴリズ ムと比較することによって、適応関数空間全体に 対する入力信号ベクトルを新たに定義した。そし て、拡張した更新式に対する分散演算型LMS適応 フィルタの収束式と収束条件を導出した、これよ り,収束速度は入力信号ベクトルの自己相関行列 の固有値分布に依存し、固有値が広く分布するほ ど収束速度は劣化することを明かにした.次に, 新たに定義した入力信号ベクトルの性質より、提 案法に比較して従来法の固有値が広く分布するこ とを示した.この原因は、従来法の符号化方式が 特殊なために符号化された入力信号にオフセット が加わり、ある固有値が他に比べて非常に大きな 値を持つためである. これにより、従来法の収束 速度は提案法に比較して大幅に劣化することにな る.さらに,入力信号が有色信号の場合について 収束速度を検討した.

今後は、有色信号に対する収束速度の詳細な検 討と適応関数空間を分割化したマルチブロック構 成に対する収束速度について検討する予定である。

参考文献

- A. Peled and B. Liu, "A new hardware realization of digital filters," IEEE Trans. Acoust., Speech & Signal Process., vol.22, no.12, pp.456-462, Dec. 1974.
- C.F.N. Cowan and J. Mavor, "New digital adaptive-filter implementation using distributed-arithmetic techniques," IEE Proc., vol.128, Pt.F, no.4, pp.225-230, Aug. 1981.
- C.H. Wei, J.J. Lou, "Multimemory block structure for implementing a digital adaptive filter using distributed arithmetic," IEE Proc., vol.133, Pt.G, no.1, pp.19-26, Feb. 1986.
- 4) C.F.N. Cowan, S.G. Smith and J.H. Elliott, "A digital adaptive filter using a memoryaccumulator architecture:theory and realization," IEEE Trans. Acoust., Speech & Signal Process., vol.31, no.3, pp.541-549, Jun. 1983.
- 5) 豊田真嗣,高橋 強,恒川佳隆,三浦 守,"分 散演算型LMS適応フィルタのVLSI実現,"第 12回ディジタル信号処理シンポジウム講演論 文集,B8-3, pp.645-650, Nov. 1997.
- 6)豊田真嗣,高橋 強,恒川佳隆,三浦 守, "ハーフメモリアルゴリズムを用いた分散演 算型LMS適応フィルタのVLSI実現,"信学技 報,DSP98-23, May, 1998.
- 7) 高橋 強,豊田真嗣,恒川佳隆,三浦 守, "分散演算型LMS適応フィルタの収束特性解 析,"計測自動制御学会東北支部第178回研究 集会,Nov. 1998.
- 8) 牧野昭二,小泉宣夫, "エコーキャンセラの 室内音場における適応特性の改善について," 信学論(A), vol.J71-A, no.12, pp.2212-2214, Dec. 1988.
- 9) 恒川佳隆,高橋 強,豊田真嗣,三浦 守,"分 散演算によるマルチプライヤレスLMS 適応フ ィルタの高性能アーキテクチャ、"信学論(A), vol.J-82-A, no.10, pp.1518-1528, Oct.1999.
- Keshab K., Parhi, "VLSI digital signal processing systems: design and implementation," John Wiley & Sons, Inc., New York, 1999.
- 11) C. F. N. Cowan and P. M. Grant, "Adaptive Filters," Prentice-Hall, Inc., New Jersey, 1985.

- Simon Haykin, "Introduction to Adaptive Filters," Macmillan publishing Company, New York, 1984.
- 13) Gilbert Strang, "Linear Algebra and its Applications," Academic Press, New York, 1976.

A 正規方程式の導出

(69) 式に示した DA 適応フィルタの正規方程式 を導く. 誤差の自乗平均値を最小化することを考 えると評価量 Jは,

$$J = E[e^{2}(k)] = E[(d(k) - y(k))^{2}]$$
 (86)

で与えられる. ここで, d(k)は所望信号, y(k)は フィルタ出力を表す. これに出力式

$$y(k) = \frac{1}{N} \boldsymbol{S}_{\boldsymbol{D}\boldsymbol{A}}^{T}(k) \boldsymbol{P}_{\boldsymbol{w}}(k)$$
(87)

を代入すると,

$$J = E\left[\frac{1}{N^2} P_w^T(k) S_{DA}(k) S_{DA}^T(k) P_w(k)\right] - 2E\left[\frac{1}{N} d(k) S_{DA}^T(k) P_w(k)\right] + E[d^2(k)]88) = \frac{1}{N^2} P_w^T(k) E[S_{DA}(k) S_{DA}^T(k)] P_w(k) - 2\frac{1}{N} E[d(k) S_{DA}^T(k)] P_w(k) + E[d^2(k)]89) = \frac{1}{N^2} P_w^T(k) R P_w(k) - 2\frac{1}{N} q P_w(k) + E[d^2(k)]$$
(90)

となる、ここで、

$$\boldsymbol{R} = E[\boldsymbol{S}_{DA}(k) \boldsymbol{S}_{DA}^{T}(k)]$$
(91)

$$q = E[d(k) S_{DA}^{T}(k)]$$
(92)

とおいた. (90) 式は適応関数空間に関する 2 次式に なっていることがわかる. したがって, $J \ddagger P_w(k)$ に関する凸関数で唯一の最小値を持つ. ここでは, 時刻 kにおいて Jを最小にする推定ベクトルを P_w^* と表記する. P_w^* は, (90) 式の両辺を $P_w(k)$ で偏 微分して,

$$\frac{\partial J}{\partial \boldsymbol{P}_{\boldsymbol{w}}(k)} = 2\frac{1}{N^2} \boldsymbol{R} \boldsymbol{P}_{\boldsymbol{w}}(k) - 2\frac{1}{N} \boldsymbol{q}$$
(93)

となり、これを零とおいて正規方程式は

$$q = \frac{1}{N} R P_w^* \tag{94}$$

となる.