計測自動制御学会東北支部 第 188 回研究集会 (2000.6.23) 資料番号 188-7

# **ヒータ埋込型基板を用いた** LSI**の**3次元実装

## A 3D-Placement Method of LSI Chips Using Printed Circuit Boards with Built-In Soldering Heater

#### ○藤岡 与周 苫米地 宣裕

O Yoshichika Fujioka and Nobuhiro Tomabechi

#### 八戸工業大学

Hachinohe Institute of Technology

キーワード : 知能ロボットシステム (intelligent robot systems), 3 次元配置配線 (3D-placement and routing), 並 列 VLSI プロセッサ (parallel VLSI processors), FPGA (FPGAs), ラビットプロト タイピング (rapid prototyping)

**連絡先**: 〒031-8501 青森県八戸市大字妙字大開 88-1 八戸工業大学 工学部 システム情報工学科 藤岡与周, Tel.: (0178)25-8063, Fax.:(0178)25-1691, E-mail: fujioka@hi-tech.ac.jp

### 1. まえがき

コネクタを用いる手法では差し込む方向や端子 数の制約などで実現が困難であった種々の3次元 構造並列プロセッサを構築するため、本稿では、多 層基板の内層銅箔パターンをヒータと温度センサ として利用し、銅箔電気抵抗の直線的な温度依存 特性と4端子低抵抗測定法に基づく温度プロファ イル制御機能を有する新しい半田付け手法の有用 性を、実験により明らかにしている。多層基板の 表面層に他の基板との配線接続パターンを配置す るとともに、半田付け領域に該当する領域の内層 にヒータ用のパターンを配置することにより、表 面実装部品の半田付けのみならず、従来のコネク タを利用することなく多層基板同士を接続可能で ある。この結果、立方格子状や正 20 面体状など、 多角形による立体構成手法に基づく種々の3次元 構造回路基板を容易に実現可能となるため、膨大 な計算量を必要とする知能集積システム用などの 階層的かつ高並列な3次元構造並列プロセッサの 開発が可能となることを明らかにしている。

### 2. ヒータ埋込型基板

半田を加熱する新しい方法として、多層基板の 内層に銅箔パターンでヒータを備える方法が提案 されている<sup>1)</sup>。Fig. 1 に示すように、通常の多層基 板における部品実装表面層のすぐ下に新たにヒー タ用の層を追加し、銅箔によるヒータのパターン と4 端子低抵抗測定法のための4つの端子が備え られている。また、半田付け部分以外の領域を加 熱しないように、ヒータとして利用しない配線部 分はヒータ部分のパターン幅に比べて十分に太い 配線としている。Fig. 2と Fig. 3に、実際の基板の



Fig. 1 Basic structure of a built-in heater.





Fig. 2 Parts side of the built-in heater board

面実装用ICやLSIを装着するためのフットプリン トが備えられている。また、ヒータ面には、ヒー タとして使いやすいようにできるだけ幅が狭く長 さが長いパターンによりヒータを構成している。

多層基板の銅箔の一部をヒータとして利用す る概念はこれまでにない新しい概念である。さら に、銅箔の電気抵抗が銅箔の温度に対して直線的 に変化する特長を利用して、ヒータ自身を温度セ ンサとして利用する概念を新たに提案している。 銅は電気抵抗が他の金属と比較して低いことや、 空気中では酸化されやすく物性が大きく変化して



Fig. 3 Heater side of the built-in heater board

しまうため、通常はヒータとして利用されること は少ない。しかし、多層基板のパターンにおいて は厚さが 16µm から 32µm 程度であり断面積が極 めて小さいため、配線パターン幅を十分狭くかつ 配線パターン長を十分長くすることによりヒータ として利用可能な数 Ω 程度の抵抗を得ることが可 能である。また、銅は高温で酸化されやすく物性 が大幅に変化しやすいことに対しては、提案する 手法ではヒータを多層基板の内部に埋め込むため 外気から遮断されるため酸化されにくく、4 層基 板以上の多層基板の内層にヒータを備える構成で あれば十分にヒータや温度センサとして実用的に 利用可能であるという特長を有する。

このように、本来であれば4層基板以上の多層 基板において利用すべき技術であるが、その基本 的特性を調べるため、本稿では2層(両面)基板 による実験を行なっている。まず、Fig. 2と Fig. 3 に示したヒータ埋込型基板により半田付けが可能 であるかについて調べた結果を Fig. 4と Fig. 5にし めす。 Fig. 4に示すように予め基板部品面のフッ トプリント部分を半田揚げしておき、そこに ICや LSI をのせて裏面のヒータで加熱すると、Fig. 5 に示すように半田付けが1分程度で完了すること が確認できた。この場合、ヒータの電力制御は人 間が半田の様子を観察してマニュアルで行なう手



Fig. 4 Pre-soldering of the built-in heater board



Fig. 5 Soldering result of the built-in heater board

法で行なっている。また、フットプリント部分に は、表面実装部品を実装する場合に普通に利用さ れるクリーム半田を塗布することも可能と考えら れる。この結果、ヒータ埋込型基板が原理的に実 現可能であること、また、IC や LSI のすべてのピ ンが同時に加熱され半田付けが完了することが実 験により確認できた。

さらに、どのようなヒータ面パターン構造が ヒータ埋込型基板として適しているかについて何 種類かのパターンで調べた結果を Table 1に示す。 このように、細長いパターンによりヒータ抵抗を 数Ωに高めた方が、半田熔融温度に容易に到達す ることが明らかとなった。ただし、あまり細いパ

| Table 1 | Width a | and | length o | f the | heater | pattern |
|---------|---------|-----|----------|-------|--------|---------|
|---------|---------|-----|----------|-------|--------|---------|

| 配線幅       | 往複数 | 最高温度  | 抵抗值           |
|-----------|-----|-------|---------------|
| 12mil     | 28  | 215°C | 1. 9Q         |
| (0,3mm)   | 40  | 213°C | 8. 8Q         |
| 25mil     | 10  | 146°C | 0.8Ω          |
| (0.625mm) | 15  | 149℃  | 1. 3Q         |
| 50mil     | 14  | 125°C | 0.9Ω          |
| (1. 25mm) | 28  | 148°C | 1. 6 <b>0</b> |

※ 測定時の電任・電流は15V・3A-- 定、温度は15分測定時

ターンでは簡単に焼き切れてしまうことや、多層 基板には通常ガラスエポキシ複合材料が用いられ ており不必要に温度を上げるとエポキシ樹脂が炭 化して絶縁不良を起こすため、精密な温度制御が 必要となる。また、ヒータでの発熱量は数ワット 程度であるため、半田熔融温度を効率よく維持す るためにはできるだけ放熟しないようにする工夫 が必要となる。

# 3. 4 端子法に基づく温度計測・制 御

埋込ヒータの温度制御は、銅の電気抵抗が直 線性のよい温度特性を有することに着目すること により容易に実現可能である。Fig. 6 に埋込ヒー 夕温度制御の基本回路を示す。直流電源 E からの



Fig. 6 Basic circuit of the power and temperature control of the built-in heater.

電流は可変抵抗 R<sub>C</sub> により制御される。電流値 1 は温度補償された電流検出抵抗 R<sub>i</sub> の両端電圧 V<sub>i</sub> から

$$I = \frac{V_i}{R_i}$$

により得ることができる。また、埋込ヒータの印 加電圧 V<sub>h</sub> は4端子低抵抗測定法の原理により配 線抵抗などに関わらず正確に得ることができるた め、埋込ヒータの抵抗値 R<sub>h</sub> と消費電力 P は次式 により得ることができる。

$$\begin{aligned} \mathbf{R}_{h} &= \frac{\mathbf{V}_{h}}{\mathbf{I}} = \mathbf{R}_{i} \frac{\mathbf{V}_{h}}{\mathbf{V}_{i}} \\ \mathbf{P} &= \mathbf{V}_{h} \mathbf{I} = \mathbf{V}_{i} \mathbf{V}_{h} \frac{1}{\mathbf{R}_{i}} \end{aligned}$$

さらに、100 度と 0 度の時の銅の抵抗値をそれぞ れ R<sub>100</sub> と R<sub>0</sub> とすると、銅の電気抵抗の温度依存 特性は

$$\frac{R_{100}}{R_0} = 1.4250$$

である<sup>2)</sup>。銅は直線性よく温度にほぼ比例して電 気抵抗が増加するとみなせるため、常温から 200 度程度までの範囲における温度が1度上昇する場 合の抵抗増加率 k は次式により近似できる。

$$k = \frac{\mathbf{R}_{100} - \mathbf{R}_0}{\mathbf{R}_0} \frac{1}{100 - 0} = 0.00425$$

よって、室温 T, の場合の埋込ヒータの抵抗値を R<sub>hr</sub> とすると、埋込ヒータの温度 T は、

$$k = \frac{\mathbf{R}_h - \mathbf{R}_{hr}}{\mathbf{R}_{hr}} \frac{1}{\mathbf{T} - \mathbf{T}_r}$$

の関係から

$$\mathbf{T} = a \frac{\mathbf{V}_{\mathbf{h}}}{\mathbf{V}_{\mathbf{i}}} + b, \quad (a = \frac{\mathbf{R}_{i}}{k \mathbf{R}_{hr}}, \quad b = \mathbf{T}_{r} - \frac{1}{k}) \quad (1)$$

により計算できる。銅を測温抵抗体として利用す る場合には T<sub>r</sub> と R<sub>hr</sub> が規格化されているが、所望 とするサイズのヒータを半田付けパターンに合わ せて設計する場合にはヒータサイズに応じて種々 の R<sub>hr</sub> に対する温度測定が必要となる。このため、 半田付けの前に微小電流を流して R<sub>hr</sub> を求めると ともに、別に用意した温度センサにより T<sub>r</sub> を測 定しておくことで、上式の定数項 a と b を予め求 めておく必要がある。 以上の方法でヒータの温度制御を自動的に行 なうため、Fig. 7に示すようなマイコン方式温度 計測・制御システムを構築した。本制御システム



Fig. 7 Temperature measurement and control system

の基本的構成は次の通りである。まず Fig. 6にお ける V<sub>i</sub>と V<sub>h</sub>は 8 ビット A/D コンバータにより測 定される。この測定値は Z80 マイコンボードに入 力され、(1)式に基づき 8 ビット固定小数点演算に より温度が計算される。このようにして得られた 温度と目標温度を比較し、ヒータをオン/オフす るだけの制御を行なっている。

本方式により実際にヒータ温度を制御した結 果を Fig. 8~Fig. 10に示す。 測定結果はあまり精 度が良くないが、その原因として考えられること は、まず温度計算に 8 ビット固定小数点演算を用 いたため有効数字が大幅に減少したことが考えら れる。これは、実験段階で浮動小数点演算ライブ ラリが利用できなかったためであり、単精度ある いは倍精度の浮動小数点演算方式を利用すれば解 決可能と考えられる。次に、Viを計測するための 抵抗 Riの温度特性が疑われる。実験ではこの抵抗 に通常のセメント抵抗を利用しているが、高精度 な電流検出が可能な4 端子抵抗などを利用する必

- 4 -



Fig. 8 Temperature control result of the built-in hearter board  $(T=100^{\circ}C)$ 



Fig. 9 Temperature control result of the built-in hearter board (T=150 $^{\circ}$ C)

要があると考えられる。さらに、制御方式が単純 なオン/オフ制御であったこと、サンプリング時 間が10秒と長いことが問題と考えられる。銅箔を ヒータとする本手法では、電流量に対するヒータ 温度の応答性が極めて早いことが考えられる。通 常の温度制御では、温度の時間変化があまり急激 ではないため1秒程度のサンプリング時間がしば しば選択されるが、ヒータの温度を直接計測する 方式では十分短いサンプリング時間で温度計測と PIDなどの制御を行なうことが必要と考えられる。

以上の知見を裏付けるデータとして、温度計 潮を通信機能つきテスターで行ない、温度計算を パソコンで行なった場合を Fig. 11 に示す。別に得

Fig. 10 Temperature control result of the built-in hearter board  $(T=200^{\circ}C)$ 



Fig. 11 Temperature profile using a built-in heater  $(3 \Omega)$ .

た基板表面温度測定値と比較すると、電圧を印加 している間は良好な温度測定が可能であることが わかる。また、この実験ではヒータ面から大気中 に熱を奪われるため、印加電圧が一定の場合には ヒータから発生する熱量と放熱により失われる熱 量とがバランスする温度までしか温度が上昇して いない。この結果、放熱量が多い分だけヒータ消 費電力も多くする必要があるため、半田付け部分 以外にはできるだけ熱を奪われないようにするこ とが、効率のよい半田付けに必要となることが明 らかとなった。放熱量については半田付けする部 分の部品配置などにより大きく異なることが予想 されるため、目標温度にたいする負帰還制御が必 要と考えられる。さらに、電源電圧 E をほぼ 0V にした 260 秒以降では I および V<sub>h</sub> の測定値の有 効桁数が少なくなり、計算に伴う測定誤差が非常 に大きくなっている。このため、温度測定のみの 場合には、測定レンジを適切に切替えるなど微小 電流での測定誤差が増大しないように適切な有効 数字の確保が必要となる。

### 4. 3次元構造回路基板への応用

提案する埋込ヒータは、半田付けする部分の温 度プロファイルを精密に実現することが可能であ る見通しを得ている。従って、基板内における複 数箇所の埋込ヒータについても同じ温度プロファ イルに従って制御できるという特長がある。そこ で、例えば PLCC タイプの FPGA を、Fig. 12に 示すように複数個縦方向に並べ、横の4面に出て いる各 FPGA チップのピンに対してヒータ埋込型 基板により同時にすべてあるいは一部のピンの半 田付けを行なうことにより、容易に3次元構造の LSI実装が可能と考えられる。また、このような 実装法が実用的になれば、これまで基板に平面に 論理回路を展開していたのに対して、データの流 れなどがより効率的に実現できるように種々の3 次元構造の並列プロセッサなどを開発するための 新しいパラダイムを提供できると考えられる。

ヒータ埋込型基板による IC や LSI の 3 次元実 装の可能性を実験的に確かめるため、まず Fig. 13 に示すような構造の実装実験を行なった。このた め、複数の IC を縦に並べ、その片側のピンだけ をまず Fig. 14に示すようにヒータ埋込型基板によ り半田付けを行なった。次に、Fig. 15に示すよう に残りの側のピンをヒータ埋込型基板により同時 に半田づけを行なうことができた。以上の結果、 Fig. 12に示すような LSI チップの 3 次元実装が可 能であるという見通しを得ることができた。



Fig. 12 3D-placement of FPGAs

また、Fig. 16 に示すように多層基板の複数の エッジ部分に半田付け領域を備えて同時に加熱す ることにより、多角形による3次元構造回路基板 を容易に構築することが可能と考えられる。通常、 3次元構造の基板を構成する場合にはコネクタが 利用されるが、多くの場合コネクタに差し込む方 向が固定であることや、基板間の接続角度が並行 または垂直でなければならないなどの理由により 基板間の接続角度が並行や垂直以外の場合の立体 構造の構築は困難であった。これに対して、提案 する手法を用いると多層基板のエッジ部分を所望 の角度で削ることにより、任意の3次元回路構造 を構成する多角形としての回路基板を容易に実現



Fig. 13 3D-placement of ICs using 2 sides



Fig. 14 Single side soldering of ICs

することが可能と考えられる。

### 5. むすび

基板自身が温度センサの機能も兼ねて半田付 け温度まで加熱できる新しい手法について、実験 的にその有用性を確認した。今後の課題として、 多層基板の複数のエッジ部分の埋込ヒータを効率 よく制御する手法について、実験的な検討が必要 となる。さらに、本手法を応用した FPGA や並列 プロセッサなどの 3 次元実装により、知能ロボッ トシステムなどの膨大な計算量を瞬時に処理しな ければならないようなシステムの実現に関する研 究が必要となる。



Fig. 15 Both side soldering result of ICs



Fig. 16 Structure of the soldering area at the edge of multi-layer printed wiring board.

## 参考文献

- 藤岡与周,苫米地宣裕:3次元構造並列プロセッサ 開発用埋込ヒーク内蔵型多層基板,計測自動制御学 会東北支部35周年記念学術講演会予稿集,97/98 (1999)
- 2) 松山: 実用 温度測定, 67, 省エネルギーセンター (1998)