知能集積システム用低消費電力 リコンフィギャラブルVLSIプロセッサ

Low-Power Reconfigurable VLSI Processor for Intelligent Integrated Systems

張山 昌論, 森 俊介, 亀山 充隆

Masanori Hariyama, Shunsuke Mori, Michitaka Kameyama

東北大学情報科学研究科

Graduate School of Information Sciences Tohoku University

キーワード : ハイレベルシンセシス (high-level synthesis), スケジューリング (scheduling), アロケーション (allocation)

連絡先: 〒980-8579 仙台市青葉区荒巻字青葉05 東北大学大学院情報科学研究科亀山研究室 森 俊介, Tel.: (022)217-7155, Fax.: (022)263-9167, E-mail: mori@kameyama.ecei.tohoku.ac.jp

1. まえがき

マルティメディア移動体通信,通信,ロボティク ス,制御などの高速応答性が要求される応用分野 においては,汎用マイクロプロセッサだけでは速度 要求を満たすことが難しいため,専用プロセッサの 開発が望まれる.従来,専用プロセッサとしては, プロセッサ毎に専用のマスクを作成するASICが主 流であった.しかしながら,ASICの開発は,開発期 間が長く,コストも高い.近年,このような問題を 解決するデバイスとして,フィールドプログラマブ ルゲートアレイ(FPGA)が注目を集めている.Fig. 1に現在の典型的なFPGAの構成を示す.FPGAは, プログラム可能な演算器(LUT)と,LUT間を接続 するプログラム可能な配線(SB)から構成さる.各 LUTは任意のn入力1出力関数(通常n = 4程度)を 実現できる. LUTやSBをプログラムすることによ り, 並列処理が行えるため, 従来の汎用プロセッサ に比べ, 高性能化を達成できる. さらに, 開発期間 もASICの場合に比べ大幅に短縮できる. また, 1種 類のFPGAデバイスを種々の専用プロセッサとし て使用できるため, ASICに比ベコストも減少でき る. FPGAの問題としては, 以下のような原因によ り, ASICに比べ処理速度が大幅に低下するという ことが挙げられる.

- LUTはメモリを用いて実現されているため、
 専用に演算器を組んだ場合に比べ、演算器の
 速度が低下する.
- LUT間の配線がSBを多段に通過する場合に
 は, 配線遅延により速度が低下する.

特に、配線遅延に起因する性能劣化がFPGAにおいては深刻な問題となる。

以上のような従来のFPGAの問題を解決するた めに、本稿では、高性能リアルワールド応用リコン フィギャラブル VLSIプロセッサを提案する. リア ルワールド応用知能システムの典型例である、高 安全自動車システムなどの要素処理を検討した結 果,異なるデータセットに対して同一の処理を行う 負荷分散形並列処理がVLSI化の観点から有用であ ることを見出している。そこで、負荷分散形デー タフローに適合したアーキテクチャとして、隣接 間配線に基づく2次元PEアレイアーキテクチャを 提案する。この構成では、演算器間の通信の局所 化・並列化が性能向上のポイントとなるため、最 適スケジューリング・アロケーションおよび、冗長 性に基づく通信の局所化・並列化のためのハイレ ベルシンセシスも併せて提案する 隣接間配線に 基づく2次元PEアレイアーキテクチャと通信局所 化を指向したハイレベルシンセシスの相乗効果に より、従来のFPGAと比較して大幅な高性能化が 可能となる。また、提案のリコンフィギャラブル VLSIプロセッサでは、演算器を高速化するために、 論理回路で構成したALUを内蔵した演算器(PE)を 用いる.さらに、低消費電力のために、複数電源電 圧方式に基づくPE構成の検討を行う。

リコンフィギャラブルVLSIプ ロセッサの構成

2.1 負荷分散形データフローグラフ

Fig. 2に、リアルワールド応用知能システムの 典型例である高安全自動車の概念図を示す.まず、 自動車に搭載されたカメラから画像を取得し、ス テレオビジョンにより障害物の3次元座標情報を 計測する。次に、取得された障害物情報を用いて、 安全な走行軌道が存在するかどうかのチェックを行 う。この処理は、自動車と障害物の間の衝突チェッ

Fig. 2 高安全自動車概念図.

クを繰り返すことにより行われる。もし、ある時 間以内に安全に走行できる軌道が見つからない場 合には、危険状態であると判断し運転者に警報を 与える。ステレオビジョン、衝突チェックにおいて は、膨大な3次元画像情報をリアルタイムで処理 することが望まれるため、専用プロセッサの開発 が必要となる。このような観点から、著者らはス テレオビジョンVLSIプロセッサ¹⁾、衝突チェック VLSIプロセッサ²⁾等の高安全自動車の一連の処理 のVLSI化を行っている.

Fig. 3に、ステレオビジョンとそのデータフロー グラフ(DFG)を示す。ステレオビジョンでは、参 照画像と候補画像間の対応を求めた後に三角測量 の原理に基づき3次元情報を計測する。対応点探 索においては、参照ウィンドウと複数の候補ウィン ドウに対してSAD(Sum of Absolute Differences)を 計算し、SADが最小となるウィンドウの中心点を 対応点とする。そのDFGは、複数のデータセット

Fig. 3 ステレオビジョン.

Fig. 4 ステレオビジョンのDFG.

(候補ウィンドウ)に対して、並列にSAD演算が行 えるような負荷分散形DFGとなる。また、Fig. 5 に、衝突チェックのDFGを示す。衝突チェックにお いても、ステレオビジョンと同様に、自動車の座 標情報と障害物離散点情報の照合を並列に行う負 荷分散形DFGとなる。このように、リアルワール ド応用においては、膨大な数のデータセットに対 して、同一の演算を行う負荷分散形DFGがVLSI化 の観点からは重要となる。

2.2 全体の構成

Fig. 7に提案するリコンフィギャラブルVLSIプ ロセッサのブロック図を示す.1種類の演算器(PE)

Fig. 5 衝突チェック.

Fig. 6 衝突チェックのDFG.

が複数個内蔵され、各PE間では隣接したPE間でだ け配線を有する.そのため、これらの配線は専用化 され高速な通信が可能となっている.隣接したPE 間では1ステップで通信が行える.また、PEに接続 されたレジスタ間でデータをシフトすることによ り通信を行うため、隣接しないPE間での通信には、 通常PE間の距離に比例したステップ数がかかる.

負荷分散形DFGは、データセット間にデータの 依存関係がない。したがって、1個のデータセット に対する演算を隣接したPEに割り当てれば、通信 の局所化となる。このような理由から、負荷分散 形DFGは、提案するアーキテクチャに適すると考 えられる。また、通信の局所化を徹底するために、 3章で述べるように通信時間をできるだけ短くす るような、ハイレベルシンセシス(スケジューリン グ・アロケーション)が重要となる。

各PEには、ALUとメモリ(データメモリ、プログ ラムメモリ)、8近傍PEとの通信を行うための相 互結合網が内蔵される。各PEごとに、プログラム メモリは、ALUでの演算の他に、相互結合網の接

Fig. 7 リコンフィギャラブルVLSIプロセッサの ブロック図.

続を制御する。そのため、PEの機能、及びPE間 接続を動的に切替えることが可能となり、PEの稼 働率を向上できる。

2.3 加算器ベースALUの構成

ALUでは、種々の演算に対応するために、以下の 基本演算を行えるように設計する.

- 算術演算(加算,減算,除算,乗算)
- 論理演算(論理否定, 論理和, 論理積)
- 比較演算(大小比較,一致検出)

これらの機能を実現するための、ALUの構成を Fig. 8に示す.ALUは、大きく分けて、算術演算を 行うための部分と、論理演算を行う部分から構成 される.算術演算は、頻繁に用いられる演算である ため、高速に実行できことが望まれる.乗算・除算 はハードウェア量が大きく、必ずしも頻繁に用い られるとは限らない。そこで、算術演算は全て全

Fig. 8 加算器ベースALUの構成.

加算の繰り返しにより行われることに着目した加 算器ベースALUを構成している。ただし、乗算を 効率よく行うための部分積生成回路を加算器に付 加している。

Fig. 9にPEのレイアウトを示す。その結果, デー タパスに比べ制御部・メモリ部の占める面積が比較 的大きくなることがわかった。これは、Local Memory, 及び, プログラムメモリをSRAMを用いて構 成したためである。

2.4 低消費電力化に関する考察

CMOS回路において,消費電力P,負荷容量C,電 源電圧V,周波数Fとの関係は次式で与えられる。

$$P \propto C V^2 F \tag{1}$$

この式から、低消費電力化のために、最も効果的 なのは電源電圧を低下することだと言える。そこ で、Fig. 10に示すような複数電源電圧方式を導入 検討する。この方式では、Fig. 11に示すように, クリティカルパス上にない演算を電源電圧が低い PEで行うことにより、消費電力を減少することが 可能となる。

設計ルール CMOS 0.5µ 二層メタル	
面積	3.63m m ²
動作電圧	3.3v
処理速度	5.45ns
トランジスタ数	1 7.1 k

Fig. 9 PEレイアウト.

- 通信の局所化・並列化のための
 ハイレベルシンセシス
- 3.1 最適スケジューリング・アロケーション

シフトレジスタ構造に基づきデータ通信を行う アーキテクチャにおいては、スケジューリングおよ び、アロケーションが高性能化の重要なポイントと なる. Fig. 12にスケジューリングおよびアロケー ションの例を示す. 簡単のために、1次元のシフト レジスタ構造を考える. Fig. 12(a)に示すようにス ケジューリングおよびアロケーションを行った場 合場合には、演算O₁の結果をO₂で使用するために、 PE₁からPE₃へのデータ転送が必要となる. また、 演算O₃の結果をO₄で使用するために、PE₂から

Fig. 10 複数電源方式のためのPEの構成.

PE4へのデータ転送が必要となる. この場合, PE2 とPE3の間の配線において,通信の競合を生じない ようにするために, Step 2において, PE2からPE4 へのデータ転送を一時中断している. 一方, Fig. 12(b)に示すスケジューリング・アロケーションで は, PEでの通信が局所化されているため, 演算O1 の結果をO2で使用するための通信PE1 PE3, 演 算O3の結果をO4で使用するための通信PE2 PE4 が並列に行える. このように,スケジューリングお よびアロケーションにより, 処理時間が異なるた め, 最適なスケジューリング・アロケーションを求 めることが重要となる.

本アーキテクチャでは、アロケーションにより通 信時間が異なるために、スケジューリングにおい てもアロケーションの情報を考慮する必要がある. そのための手法として、スケジューリング・アロ ケーションの統合に基づく手法^{3)_4)}を用いる. こ の方法では、各演算ノードに対するスケジューリ ング・アロケーションをFig. 13に示すように木探 索で表現している. さらに、総当たり探索では探索 空間が膨大となるために、クリティカルパスに着 目した処理時間の下限に基づく分枝限定法により 探索空間を効率よく限定している.

本稿では、FPGAアーキテクチャの性質に着目し、 探索空間をさらに限定する.従来の問題設定³⁾で は、各PEは異なる機能を有する場合を考慮した一

 Fig. 11
 低消費電力化のための演算器アロケー

 ション.

般的な場合を取り扱っていた.一方,本稿では,各 PEは全て同じ構成であるために,明らかに性能が 同じアロケーションが存在する.そこで,そのよう なアロケーションの探索を省略することにより,探 索空間を限定できる.

4. むすび

本稿では、リアルワールド応用のための再構成 可能VLSIプロセッサを提案した.リアルワールド 応用において重要となる負荷分散形DFGに着目し 隣接間通信アーキテクチャを提案した。このアー キテクチャをステレオビジョンの例でASICによる 実現と比較したところ、同等の性能で5倍程度の 面積となることが分かった。

また,任意のDFGが与えられた場合に,本アーキ テクチャにマッピングを行うスケジューリング・ア ロケーション手法の検討が重要である.現状では, 実用的な時間でマッピングできるのは,ごく小規 模の問題だけである.そこで,より大規模かつ実用

Fig. 12 最適アロケーション・スケジューリング の必要性.

Fig. 13 木探索によるスケジューリングとアロ ケーションの統合.

的な問題を,本アーキテクチャにマッピングするための手法の検討が重要となる.

参考文献

- 張山 昌論, 李 昇桓, 亀山 充隆,"転送ボトルネックの ないセンサ・メモリアーキテクチャに基づくモー ションステレオVLSIプロセッサの構成",電気学会 論文誌,120-E,5,pp.237-243(2000).
- 2) Masanori Hariyama, Kazuhiro Sasaki, Michitaka Kameyama,"Collision Detection VLSI Processor for Intelligent Vehicles Using a Hierarchically-Content-Addressable Memory," IEICE Trans. Electron,E82-C,9,pp.1722-1729(1999).
- 3) 工藤隆男, 亀山充隆,"シフトレジスタ構造に基づく ロジックインメモリVLSIプロセッサとその応用," 計測自動制御学会東北支部研究集会, 187-15(2000).
- 1) 工藤隆男, 亀山充隆, "転送ボトルネックフリーVLSI システムのハイレベルシンセシス," 計測自動制御 学会東北支部研究集会, 188-6(2000).