腕を有する2脚ロボットの制御に関する研究

Control of a Biped Robot that has Arms

甲斐田壮*,熊谷正朗*,江村超*

Sou Kaida*, Masaaki Kumagai*, Takashi Emura*

*東北大学

*Tohoku University

キーワード: 2脚ロボット (biped robot), 歩行ロボット (walking robot), 腕 (arm), モーメント (moment)

連絡先: 〒980-8579 仙台市青葉区荒巻字青葉01 東北大学大学院工学研究科機械電子工学専攻 メカトロニクス講座メカトロニクス設計学分野

甲斐田壮, Tel.: (022)217-6969, Fax.: (022)217-6967, E-mail: kaida@emura.mech.tohoku.ac.jp

1. 緒 言

今日,盛んに2脚ロボットの研究が行われている. 将来,ロボットは人間の日常生活の手伝いや,福祉 活動などのために,人間の生活環境に入り込んで くると考えられる.そうしたとき,最適なロボット の移動手段の一つとして人間と同じ2脚移動機構 が挙げられる.なぜなら,人間の生活環境は2本脚 で歩行する人間に適したつくりになっているから である.

しかしながら、2脚移動機構は他のよく用いられ ている移動機構(車輪、クローラなど)に比べ安定性 が低いという欠点があり、安定性の向上が大きな 課題となっている.

人間は歩行をする際,脚の動きだけでバランス をとっているわけではなく体全体を用いて行って いる.そこで今回,歩行の安定性向上のため,人間 の腕振りに注目した.人間は腕がないとバランス がとりにくく,腕の振りにより発生する力をうま く用いて安定した歩行を行っている.これを2脚口 ボットに応用することで,安定した歩行の実現を 目指す.

2. Monroe Arm の特徴

江村研究室において以前より研究が行われてい る2脚ロボット(Monroe)へ,新たに腕をつけること により,より安定な歩行を目指すためMonroe用の 腕の設計及び製作を行った.今回設計した腕(Monroe Arm)は、クランクスライダを用い、1自由度な がら2関節(肩関節,肘関節)が可動する機構を有す る.その機構をFig.1に示す.この機構により、1自 由度ながら歩行時の人間の腕振りに近い肘関節の 動きも実現可能となっている.その腕振り軌跡を Fig.2に示す.

また腕の利用を考える場合,なるべく大きな力 を腕振りにより発生させられることが望まれる. 今回の機構では肘関節が動くことにより,肩関節 のみ可動の腕振りに比べ,より大きな慣性力及び モーメントを発生させることができる.

Fig. 1 Monroe Arm の機構

Fig. 2 腕振り軌跡 (Saggital Plane)

本来はそれぞれの関節に自由度を持たせ制御し たほうがより人間に近い腕振りを実現できると考 えられる.しかし1自由度あたり最低一つのモータ が必要となり,動かすための機構を含めるとかな りの重量となる.ロボット全体の制御を考えたと き,脚部モータのトルクの関係でなるべく軽量に する必要があり,今回腕の自由度は1自由度とした.

3. Monroe Arm の設計

設計した腕の組立図をFig.3 に示す.スマートな 形状にするため,モータを腕の中に組み込み,モー タの回転運動をボールネジで直線運動に変換し, クランクスライダ機構によって関節を駆動してい る.フレームの材料は主にアルミを使用し,強度 を必要とする箇所にはジュラルミンを使用してい る.腕の寸法は身長1600[mm]の人間をモデルとし, 長さ600[mm]で設計しており,腕の重量は片腕あた

Fig. 3 腕の組立図

Fig. 4 腕装着時のMonroeの外観

り2.5[kg]と軽量に抑えられている. 腕の可動範囲 は、ロボット本体に対する上腕の角度(肩関節角度) が後方-25[deg]から前方25[deg], 上腕に対する前 腕の角度(肘関節角度)が0[deg]から前方52.8[deg]と なっている.

実際に製作した腕をMonroeに装着させたとき の外観をFig.4に示す. 肩幅は駆動機構を腕の中に 収めたため若干大きめとなっており,人間の肩幅 が約450[mm] であるのに対しMonroeは540[mm]と なっている. 腕を含めたMonroeの全重量は27[kg] である.

Fig. 5 ハードウェア構成

4. ハードウェアの構成

設計・製作したハードウェアの構成をFig.5 に 示す 腕の駆動には山洋電気製V404のサーボモー タを用い、山洋電気製のDA2D020DV27P00サーボ アンプを用いてモータの制御を行う. このアンプ はアナログ入力(速度制御)とパルス列入力(位置制 御)の2つを選択することができ、今回はパルス列 入力を用いている その入力パルスを生成するの がパルスジェネレータである. このパルスジェネ レータはマスタコンピュータとPIOボード経由で 接続されており、マスタコンピュータから指令さ れた数のパルス列を生成しアンプへ出力する ま たアンプから出力されるエンコーダの2相パルス をカウントして、マスタコンピュータにモータの 回転角情報を提供する。これをもとにマスタコン ピュータにおいて腕の運動学演算,軌道計画等の 処理を行う

5. 腕制御のソフトウェア

腕を制御するにあたり, 腕の軌道計画, 運動学演 算等のプロセスが必要となる. それらのプロセス をまとめて一つのプログラムとすると非常に複雑 になる. そこでMonroeの脚の制御同様, 頻繁に書 き換えるプログラム(軌道計画等) とそうでないも の(運動学演算等)とに分け, それぞれマルチタスク で実行する.

プロセス間のやりとりは変数をVariableSetに設 定し、伝言板デバイス(message board device)上で

Fig. 6 マルチタスクによる腕の制御

行う³⁾ これにより腕の制御はメインループにお いて、VariableSetの肩関節角度の設定のみを行い、 その変数が書き換えられた時点で他のプロセスが 変数を受け取り運動学演算等の処理を行う.この プロセスの流れをFig.6 に示す.

6. 足軌道の生成

歩行を行う際,足軌道の良し悪しは安定性を大 きく左右する要因の一つである.その足軌道は今 まで,単位時間に進む軌道の始点と終点を三角関 数で補間し生成していた.しかしこの生成手法は, 一周期通した軌道のイメージがつかみ辛く,意図 したとおりの軌道を生成するのが困難であった.

そこで、図やイラスト作成によく用いられるア プリケーションのIllustrator(Adobe社)を用いて足 の軌道を作成する.この方法は、Illustrator上で描 きながら軌道を作ることができるので、視覚的に わかりやすく、また複雑な軌道も簡単に作ること ができる.

6.1 Bézier曲線

Illustratorの曲線の多くは3次のBézier曲線で描 かれる. n次のBézier曲線は $t(0 \le t \le 1)$ をパラメー タとして次式で与えられる¹⁾.

$$P(t) = \sum_{i=0}^{n} B_{i,n}(t)C_i$$
 (1)

– 3 –

Fig. 7 Illustratorによる足軌道生成(矢状面)

ここで*B_{i,n}*はBernstein基底関数(Bernstein basis function)と呼ばれるものであり、次式で表される.

$$B_{i,n}(t) = \binom{n}{i} (1-t)^{n-i} t^{i} \\ = \frac{n!}{i!(n-i)!} (1-t)^{n-i} t^{i}$$
(2)

また, C_i は制御点(control point)と呼ばれる任意の 位置ベクトルであり, C_i の配置によって曲線の形 状が決定される.

6.2 軌道の生成

水平面もしくは矢状面に投影した足軌道をIllustrator上で描く. その際, 複数の3次Bézier曲線, 2次 Bézier曲線, 直線(1次Bézier曲線)を組み合わせ, そ れらを連結させ一周期の足軌道とする(Fig.7). こ のとき, 分割の仕方, 及び制御点の位置により足の 移動速度を調整することができる.

作成した軌道はEPSファイル形式で出力する.そ してこのファイルデータの制御点部分及び線情報 のみを取り出し,別ファイル(制御点ファイル)に出 力する.この制御点ファイルをロボット制御時に 読み込み,そこでBézier曲線を復元し足軌道を生成 する.この一連の流れをFig.8に示す.

7. 着地時の衝撃力対策

歩行の際,着地時の衝撃により安定性が低下す るという現象が見られる.これは,歩行速度が上が るにつれ顕著に現れ,この衝撃力の吸収は必要不

Fig. 8 足軌道生成の流れ

Fig. 9 衝擊吸収構造

可欠となる.その衝撃力を吸収緩和する対策を以 下に述べる.

7.1 緩衝材による衝撃吸収

ハード的に緩衝材を用いて衝撃緩和行う. 緩衝 材は,ジェルテック社製のθゲルを使用する. θゲル とは,自己保形,復元性に優れたシリコンをベース としたゲル状物質(ゲル)の機械的強度を飛躍的 に高めた高強度ゲルである.

Monroeの足底には片足あたり6つの力センサが 取り付けられており、床反力はそれらの力センサ で全て受け、ZMPなどの計算を行っている.力セ ンサは大きな撃力が加わるとセンサの材質上ゼロ 点が狂うときがあり、これを防ぐことも考慮に入 れ、力センサと床との間に緩衝材を置く.その構造 をFig.9に示す.

床と接する面にはウレタンシート(厚さ7[mm])

Fig. 10 緩衝材装着後の足底

を複数のゲルをつなぐようにして取り付けている. ウレタンシートもまた衝撃吸収に優れた素材の一 つである.歩行の際,足底と床面との間の摩擦によ リゲルには剪断力が働く.一つのゲルでその力を 受けると非常に大きな変位となり歩行時の不安定 要素となる.そこで複数のゲルを結ぶことにより, この剪断力を複数のゲルで受け剪断方向の変位を 抑えている.緩衝材装着後の足底をFig.10に示す.

緩衝材による衝撃吸収の度合いを調べるため,衝 撃吸収実験を行った.実験は,重さ2.5[kg]の鉄の重 りを高さ50[mm]の所から足底へ自由落下させる. そのときの衝撃力をFig.11に示す.緩衝材無しの 足底には1[s],ゲルθ-6を利用した緩衝材着き足底 には2[s],ゲルθ-5の場合は3[s]にそれぞれ衝撃力を 与えている.ゲルθ-6,ゲルθ-5はそれぞれゲルの種 類であり,硬さや耐久性の観点よりゲルθ-6を緩衝 材として採用した.この図から分かるように,緩衝 材を足底に装着することにより衝撃力を半分以下 に抑えることができている.

7.2 インピーダンス制御

衝撃力を吸収緩和する方法としてインピーダン ス制御がある。脚先にFig.12のような,仮想バネ-質量-ダンパ系を置き,脚先にかかる力に対する足 首の位置制御を行う²⁾.

この系の運動方程式はf [N]を接地力, m_d [kg]を 目標質量. d_d [N·s/m]を目標減衰係数, k_d [N/m]を

Fig. 11 衝撃吸収実験

Fig. 12 インピーダンスモデル

目標バネ定数, λ [m]を脚先変位量として次式で表 される.

$$f = m_d \ddot{\lambda} + d_d \dot{\lambda} + k_d \lambda \tag{3}$$

ここで,

$$\begin{cases} \lambda_1 = \lambda \\ \lambda_2 = \dot{\lambda_1} = \dot{\lambda} \end{cases}$$
(4)

とおくことにより,以下の式になる.

$$\begin{bmatrix} \dot{\lambda_1} \\ \dot{\lambda_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k_d}{m_d} & -\frac{d_d}{m_d} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{f}{m_d} \end{bmatrix}$$
(5)

各定数は,経験より目標質量を100[kg],目標減衰 係数を9000[N·s/m],目標バネ定数を20000[N/m]と した.

また常にインピーダンス制御を行っていると,単 脚支持期の支持脚は自重により脚長が短くなり,そ の結果安定性が落ちるとともに,遊脚の足付き位 置が上がりかえって衝撃力を増大させる恐れがあ る.そこで着地時の衝撃力を吸収した後は元の脚 長に戻す必要がある.

7.3 着地位置補正制御

着地時に大きな衝撃が発生する要因の一つとし て,遊脚から支持脚に移行する足が床を蹴り込む 現象があると考えられる.足軌道では床との高さ が0[mm]になるところで足下げを止めている.し かし実際にはロボット座標系において,脚の剛性 により支持脚の接地位置が上にあがり,それに伴 い遊脚の着地位置も上昇する.そのため上昇した 分,足が床を蹴り込むことになる.

これは、剛性のみならず上体が傾斜するときに も似たような現象が起きる.上体が前方や遊脚側 へ倒れ込んだ場合に、遊脚の着地位置が上昇する. この上昇分を補正することにより衝撃力の低減を 行った.そのモデルをFig.13に示し、補正値の算出 方法を以下に述べる.

ロボット座標系において,床面(水平面)の法線ベ クトルを(p, q, r)とするとそれらはロボットの姿 勢角 (θ_p, θ_r) より次のように与えられる.

$$\begin{cases} p = 1\\ q = tan(\theta_p) \\ r = tan(\theta_r) \end{cases}$$
(6)

床面の固定点より決まる定数をaとすると床面の 式が以下のように求まる。

$$px + qy + rz + a = 0 \tag{7}$$

この式より、y-z平面での座標 (l_y, l_z) におけるX軸 方向の補正値 L_l は次式で求まる.

$$L_l = -\frac{1}{p}(ql_y + rl_z + a) \tag{8}$$

Fig. 13 着地位置補正制御

8. 歩行時の安定化制御

この章では、歩行時の安定性を向上させるため の制御について説明を行う.

8.1 ZMPを用いた上体移動制御

歩行中,2脚ロボットの姿勢の崩れ方として2通り の崩れ方が顕著に見られた.一つ目は,ロボット全 体が前につんのめる形で姿勢を崩すパターン.も う一つは,後方に倒れこみ支持脚から遊脚への移 行が出来ないというパターンである.これらの崩 れ方は,前後のバランスの悪さが引き起こすもの である.

そこでZMPを用いた上体移動制御を行う.上体 位置が前よりの場合,ロボットは前方へ倒れ,逆に 上体位置が後よりの場合,ロボットは後方へ倒れ 込む傾向がある.この傾向を利用し,倒れ込みを ZMPで判断,それに応じ上体を前後へ移動させる.

両足底の力センサより得られる左右それぞれの 足底ZMPから、ロボット全体のZMPを算出する.こ のZMPと両足首を結んだ直線との距離を算出し、 その距離に応じて上体を前後に移動させる.

ロボット全体のZMP座標 (x_{zmp}, y_{zmp}) は、右左そ れぞれの足底ZMPの座標を $(x_r, y_r), (x_l, y_l)$ とし、右 左それぞれにかかる加重を f_r, f_l とする、次式のよ うに表される.

$$\begin{bmatrix} x_{zmp} \\ y_{zmp} \end{bmatrix} = \frac{f_r}{f_r + f_l} \begin{bmatrix} x_r \\ y_r \end{bmatrix} + \frac{f_l}{f_r + f_l} \begin{bmatrix} x_l \\ y_l \end{bmatrix}$$
(9)

Fig. 14 上体移動制御

このZMPと両足首を結んだ直線との距離を*margin* とおき,両足首を結んだ直線を(10)式とすると,(11) 式により*margin*は求まる.

$$ax + by + c = 0 \tag{10}$$

$$margin = \frac{ax_{zmp} + by_{zmp} + c}{\sqrt{a^2 + b^2}}$$
(11)

この*margin*が大きければ大きいほど安定性が低く, *margin*の値が低くなる方向に上体を前後させる. 正確には足軌道を前後に移動させる. これらをFig.14に示す.

8.2 蹴り動作制御

支持脚だった脚が遊脚に移行する際は、ZMPを もう片方の脚の方へ移動させ、足底にかかる床反 力を軽減させなくてはならない.しかし安定性を 欠いた歩行の場合、ZMPの移動がうまくできず大 きな床反力がかかったまま足上げ動作に移り、転 倒する現象が起こる.この現象を抑えるため、遊脚 に移行する直前に床面を蹴る動作を加える.

蹴り量は、足底にかかる床反力 $f_a[N]$ と両足首間 を結ぶ軸に直交し、床面に含まれる軸回りの倒れ $\Re r_a[deg](遊脚に移行する脚方向への倒れ込み正)$ により決定する(Fig.16). 仮想荷重を $f_k[N]$ 、変換 係数を a_{af} とし、次式で f_k を求める.

$$f_k = -(f_a + a_{af}r_a) \tag{12}$$

Fig. 15 蹴り動作制御

この仮想荷重*f*_kを遊脚に移行する手前で、インピー ダンス制御へ負の荷重として入力する.それにより 足首位置は下向きに変位し、蹴り動作が実現する.

またこの蹴り動作が入る直前の単脚支持期のRoll 傾斜角を用いて蹴り動作時の仮想バネ係数を調整 する. Roll方向の揺れが大きい場合,その反動によ り次の単脚支持期の揺れも大きくなるので,仮想 バネ係数の値を大きくし蹴り量を小さくすること により,揺れを抑制する.

蹴りの動作は前方への勢いを生み,支持脚がロ ボットの上体を前に押し出すときの負担を軽くす る効果も得られる.

8.3 步幅調整制御

姿勢維持の制御は主に、姿勢が崩れるのを防止 する役目が大きい.しかし歩行の際、上体を常に目 標の姿勢に保とうと制御を行っていても、着地の 状況などによりどうしてもバランスを崩すことが ある.そこでバランスを崩さないように制御を行 うのではなく、バランスが崩れつつある状態から の復帰をさせる制御が必要となる.そういう制御 の一つとして、歩行中の歩幅を調整する歩幅調整 制御を行う.

歩幅調整制御は単脚支持期,ロボット上体が前 方へ倒れ込んだ場合,遊脚の着地位置を前方へ移 動させ歩幅を長くする.これにより転倒を防ぎ,両

Fig. 16 步幅調整制御

脚支持期において上体の姿勢を目標に復帰させる. 逆に後方へ傾斜した場合は支持脚の移動量を少な くさせ歩幅を短くする.これにより後方への傾斜 を抑制する.

移動量をそれぞれ遊脚と支持脚において δ_f, δ_s とし、上体のPitch傾斜角を θ_p とすると移動量は $\theta_p - \rho_p \ge 0$ のとき

$$\delta_f = g_h(\theta_p - \rho_p) \tag{13}$$

$$\theta_p - \rho_p < 0$$
のとき
 $\delta_s = -g_h(\theta_p - \rho_p)$ (14)

なお g_h は傾斜ゲイン. ρ_p はオフセット角.この移 動量を遊脚,支持脚それぞれの足位置 y_f, y_s に加え ることにより,歩幅調整制御が行われる.

9. 腕の利用

左右の腕を対称に振ることによりYaw軸回りの モーメントが発生する.この力を有効に利用する ことにより,歩行時の安定性を向上させる.

9.1 モーメント 抑制制御

歩行速度が速くなるに従い、脚の動きにより発 生するYaw軸回りのモーメントが大きくなる.こ のモーメントは足底と床面との間に滑りを生じさ せ、進行方向が変化するとともに歩行時の安定性 を大きく低減させる.

Fig. 17 Yaw**軸回りに発生する**Moment

そこで脚の動きに同調した腕振りをさせること により、脚の動きで発生したYaw軸回りのモーメ ントをキャンセルする方向にモーメントを発生さ せる.これにより滑りによる安定性低下を抑制す ることができる(Fig.17).

9.2 方向転換制御

歩行速度が上がり歩行距離が長くなるにつれ,ロ ボットの進む向きは直進を保つのが困難となり,左 右のいずれかに誤差を生じ始める.今の実験環境 は,ベルトコンベア上であり横幅が非常に狭い.進 む向きが左右に誤差を生じた場合,その向きを補 正しなければすぐにベルトコンベアの使用範囲か ら外れてしまう.これを防ぐために,熊谷が製作し た2脚ロボット用ステレオビジョンによる目標物探 査³⁾を利用して,ロボットの方向転換を行う.この 方向転換の際,腕振りを変化させロボットの向き を変える方向に作用する力を発生させる.これに より足底に滑りが生じにくいスムーズな方向転換 が可能となる.

方向転換は、歩行の一周期を通して行う(Fig.18). 画像の取得は一周期に一回両脚支持期の時に行い、 画像処理により目標物の位置(中心からのずれ)を 計算する.この位置を v_d とし、位置に比例した角度 $(\phi_r[deg], \phi_l[deg])$ を求める.

$$\begin{cases} \phi_r = a_c v_d \\ \phi_l = -a_c v_d \end{cases}$$
(15)

Fig. 18 方向転換制御

なお*a_c*は変換係数.

Fig.18はロボットの歩行を上から見ている図で ある.そして塗りつぶしの状態が両脚支持期であ る.初めの単脚支持期(左足接地)において,それぞ れ足底をyaw軸回りに回転させ $\phi_r[deg], \phi_l[deg]$ に収 束させる.そして次の単脚支持期(右足接地)にお いて, yaw軸回りの角度を0[deg]に収束させ方向転 換が終了する.

腕の動きは、指令肩関節角度を右左それぞれ θ_{sr}, θ_{sl} とすると次のようになる.

$$\theta_{sr} = a_s \cos(\pi t) + \rho_{so} - b_g \phi_r \sin(2\pi t) \tag{16}$$

 $\theta_{sl} = -a_s \cos(\pi t) + \rho_{so} - b_g \phi_l \sin(2\pi t) \qquad (17)$

なお a_s は腕振り振幅, ρ_{so} はオフセット角, b_g は方向 転換ゲイン, $t(0 \leq t \leq 1)$ は時間パラメータである.

第1項は、足の動きにより発生するYaw軸回りに 発生するモーメントをキャンセルするための項で ある.そして第3項が方向転換の際に利用するモー メントを発生させる項である.方向転換制御時の 腕振り波形の様子をFig.19に示す.この図におけ るモーメントは腕振りにより発生するYaw軸回り のモーメントであり、右回りが正となっている.

初めの3[s], 4[s]付近において進行方向を右へ方 向転換させる制御が行われている. この時, 腕振り が変化し右回りのモーメントを大きく発生させて いる. このとき足のYaw角を変化させることによ り足底の滑りを抑えた方向転換が行われる. 同様 に7[s]から9[s]付近にかけては左への方向転換の様 子である.

Fig. 19 方向転換時の腕振り波形

Fig. 20 水平面内における足軌道計画(右足)

10. 步行実験

前章まで歩行時の制御等について述べてきた. それらの制御を用いてデューティ比5/8,ストライ ド長約330[mm],周期2.3[s],歩行速度に直すと約 145[mm/s]の歩行を行わせる.このときの足軌道 計画(右足)をFig.20に示す.

デューティ比が大きい場合、両脚支持期において 単脚支持期の運動エネルギを消そうとする動きが 生まれる。一方デューティ比を向上させ値が小さ くなるほど、単脚支持期の運動エネルギを次の動 作にうまく受け継ぐ必要がある。そのことを意識 し、単脚支持期から両脚支持期への軌道の移行は 滑らかに行われるよう軌道計画を行っている。

またこの軌道計画の特徴として、両脚支持期に おいてロボットの重心位置が両足首を結んだ軸上 をほぼ移動するように計画している.これにより

Fig. 21 床反力の時間変化

両足首を結んだ軸回りの倒れ込みを抑制すること ができ,安定性の向上が図られている.

10.1 実験結果

実際に歩行させたときの床反力の時間変化を Fig.21に示す. この図より着地時の衝撃が非常 に小さく抑えられているのが分かり,着地時の衝 撃力対策が有効に働いていることが確認できる.

次に上体姿勢角の時間変化をFig.22に示す. Pitch 角は前方倒れ込みが正, Roll角は右側倒れ込み正と なっている. この図より-5[deg]から+5[deg]と大き めに姿勢角は推移しているが,発散せずに制御が なされている.

肩関節角と足Yaw角の時間変化をFig.23に示す. ロボットがほぼ直進したため、方向転換のための 腕振り変化は殆ど見られないが、足Yaw角の変化 が若干ではあるが見られ、方向転換制御が行われ ていることが分かる.

11. 結 言

2脚ロボットに腕をつけるにあたり、ハードウェア の腕本体、サーボアンプ等の設計及び製作、制御の ための運動学演算処理等を含むソフトウェアの作 成を行った.それらの環境を用いて、安定性向上の ための各種制御、及び腕振りで発生するYaw軸回り の力を利用した制御により、歩行速度約145[mm/s]

Fig. 22 上体姿勢角の時間変化

Fig. 23 肩関節角と足Yaw角の時間変化

の動歩行を実現した

今後の課題として、実現した動歩行はまだ安定 性が高いと言い切れる段階ではなく、数歩歩行し た所で安定性を著しく崩すケースが見られる、今 後さらなる安定性向上が課題である。

参考文献

- 1) 香美 義幸:プレイバック自立走行の基礎的研究,東 北大学大学院修士学位論文,18/21(1997)
- 2) 森谷 慎司:4脚ロボットの斜面歩行に関する研究, 東北大学機械電子工学科卒業論文,29/30(1998)
- 3) 熊谷 正朗:人型2脚ロボットの時変傾斜面への適応に関する研究,東北大学大学院博士学位論文, 68/86 125/132(2000)