計測自動制御学会東北支部 第206回研究集会(2002.12.10) 資料番号206-9

位相限定相関関数を用いた高精度 画像レジストレーション手法の検討

Consideration of a High-Accuracy Image Registration Technique Using a Phase-Only Correlation Function

○佐々木慶文*, 瀧田健児**, 青木孝文**, 樋口龍雄**

○Yoshifumi Sasaki*, Kenji Takita**, Takafumi Aoki** and Tatsuo Higuchi**

*石巻専修大学, **東北大学大学院情報科学研究科

*Ishinomaki Senshu University, **Graduate School of Information Sciences, Tohoku University

キーワード: 位相限定相関関数(phase-only correlation function), 画像レジストレー ション(image registration), 画像照合(image matching)

連絡先: 〒986-8580 宮城県石巻市南境新水戸1 石巻専修大学理工学部 佐々木 慶文, Tel.: 0225(22)7716, Fax: 0225(22)7746, E-mail sasakiy@isenshu-u.ac.jp

1. はじめに

サブピクセルレベルの高精度な画像照合は工業 生産,医療,計測などの分野において重要な基本 処理である.このための画像照合手法としては, 各種の相関関数を用いる方法や画像の特徴点マッ チングに基づく方法などが提案されているが,特 に,近年,サブピクセルレベルで平行移動量を高 精度に推定する画像照合手法として位相限定相関 関数に基づく手法が研究されている[1]-[3].筆者ら の研究グループにおいても,これまでに位相限定 相関関数に基づく画像照合に関する組織的な研究 開発を行い[4]-[6],指紋照合式出入管理装置など [4]を実用化している.

本稿では、位相限定相関関数を用いた高精度画 像レジストレーションの原理を述べるとともに、 これまでの手法[6]に対して、新たにスペクトルウ ェイティング関数を導入することより、高精度化 を実現する手法について述べる.また、実験に基 づく評価により,平行移動量を 0.0037 ピクセル, 回転量を 0.0110 度,スケール変化を 1.29×10⁴程 度の誤差で推定可能であることを明らかにすると ともに,今後の応用展開について言及する.

2. 位相限定相関法に基づく画像照合

本稿で述べる画像照合とは、2枚の画像 $f(x_1, x_2)$ と $g(x_1', x_2')$ が次式で表される相似変換の関係に ある場合に、平行移動量、回転量および拡大縮小 率を示すパラメータ(δ_1, δ_2)、 θ および λ を求める ことである.

$$\widetilde{g}(x_1', x_2') \cong f(x_1, x_2)
\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} = \lambda \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} x_1 + \delta_1 \\ x_2 + \delta_2 \end{pmatrix}$$
(1)

ただし, δ_1 , δ_2 は微小な値を取るものとする. このための手法として,位相限定相関法を用いる.

2.1. 位相限定相関法

連続空間で定義された2次元画像 $\tilde{f}(x_1,x_2)$ を考

える. ここで, x_1, x_2 は実数である. $\tilde{f}(x_1, x_2)$ を x_1, x_2 方向にそれぞれ δ_1, δ_2 だけ微小移動した画 像は, $\tilde{f}(x_1 - \delta_1, x_2 - \delta_2)$ と表わされる. これらの 2つの画像を標本化間隔 T_1, T_2 で標本化した離散 空間における 2 次元画像をそれぞれ $f(n_1, n_2)$ およ び $g(n_1, n_2)$ とし, 次式のように定義する.

$$f(n_1, n_2) = \tilde{f}(x_1, x_2)$$

$$g(n_1, n_2) = \tilde{f}(x_1 - \delta_1, x_2 - \delta_2)$$
(2)

ただし, $x_1 = n_1T_1, x_2 = n_2T_2$, $n_1 = -M_1, \dots, M_1$, $n_2 = -M_2, \dots, M_2$ とし, 画像サイズを $N_1 = 2M_1 + 1, N_2 + 2M_2 + 1$ とする. これらの2次元 離散フーリエ変換(2次元 DFT) $F(k_1, k_2)$ および $G(k_1, k_2)$ は, 次式により表される.

$$F(k_1,k_2) = \sum_{n_1=-M_1}^{M_1} \sum_{n_2=-M_2}^{M_2} f(n_1,n_2) e^{-j\frac{2\pi}{N_1}k_1n_1} e^{-j\frac{2\pi}{N_2}k_2n_2}$$
$$G(k_1,k_2) = \sum_{n_1=-M_1}^{M_1} \sum_{n_2=-M_2}^{M_2} g(n_1,n_2) e^{-j\frac{2\pi}{N_1}k_1n_1} e^{-j\frac{2\pi}{N_2}k_2n_2}$$
(3)

ここで, $F(k_1,k_2) \ge G(k_1,k_2)$ の間には次式の関係 が成り立つ.

$$G(k_1, k_2) \cong F(k_1, k_2) \cdot e^{-j\frac{2\pi}{N_2}k_1\delta_1} e^{-j\frac{2\pi}{N_2}k_2\delta_2}$$
(4)

式(4)が近似であるのは連続空間画像と離散空間画像に対するフーリエ変換の性質の違いによる. また, $F(k_1,k_2) \ge G(k_1,k_2)$ の位相限定合成を次式で定義する.

$$\hat{R}(k_1, k_2) = \frac{F(k_1, k_2)\overline{G(k_1, k_2)}}{\left|F(k_1, k_2)\overline{G(k_1, k_2)}\right|} \cong e^{j\frac{2\pi}{N_1}k_1\delta_1} e^{j\frac{2\pi}{N_2}k_2\delta_2}$$
(5)

位相限定相関関数 $\hat{r}(n_1, n_2)$ は $\hat{R}(k_1, k_2)$ の2次元 逆離散フーリエ変換(2次元 IDFT)である.

$$\hat{r}(n_{1},n_{2}) = \frac{1}{N_{1}N_{2}} \sum_{n_{1}=-M_{1}}^{M_{1}} \sum_{n_{2}=-M_{2}}^{M_{2}} \hat{R}(k_{1},k_{2}) e^{j\frac{2\pi}{N_{1}}k_{1}n_{1}} e^{j\frac{2\pi}{N_{2}}k_{2}n_{2}}$$
$$= \frac{\alpha}{N_{1}N_{2}} \frac{\sin\{\pi(n_{1}+\delta_{1})\}}{\sin\{\frac{\pi}{N_{1}}(n_{1}+\delta_{1})\}} \frac{\sin\{\pi(n_{2}+\delta_{2})\}}{\sin\{\frac{\pi}{N_{2}}(n_{2}+\delta_{2})\}}$$
(6)

ここで、 α は1以下の実数値である. 式(6)で表される関数は図1に示すようにデルタ関数に近いピーク特性を示すため、ピーク位置 (δ_1, δ_2) 、すなわち平行移動量を正確に推定できる. 実際に 2 枚の画像から平行移動量を推定する場 合,これらの位相限定相関関数を計算するが,得 られる関数 $\hat{r}(n_1,n_2)$ は離散点 (n_1,n_2) 上のデータで ある.そこで,図 2 に示すように相関ピークを含 む $p \times p$ の近傍点に位相限定相関関数のモデル式 (6)を $\delta_1, \delta_2, \alpha$ をパラメータとしてフィッティング することにより,真のピーク位置 (δ_1, δ_2) をサブピ クセル精度で推定する.

2.2. 位相限定相関法の高精度化

実画像から位相限定相関法により平行移動量を 推定する場合,以下の高精度化手法が有用である. (i)時系列画像が得られる場合には,その加算平均 画像を用いることにより,S/N比を向上させる. (ii)2次元DFTは,周期的に繰り返される離散信号 のフーリエ変換としてとらえられる.したがって, 2次元DFTを行う前の画像に窓関数を適用し,画 像端の不連続性による計測誤差を抑制する. (iii)カメラから取り込んだ自然画像は,一般的に エネルギーが低周波領域に集中しており,高周波

エネルギーが低周波領域に集中しており、高周波 領域の S/N 比は低いと考えられる.しかしながら 位相限定合成 $\hat{R}(k_1,k_2)$ は、式(5)で表されるように 信頼性を失った高周波領域を強調するように計算 される.以上のことから,低域通過型のスペクト ルウェイティング関数を位相限定合成に乗じるこ とにより,信頼性の低い高周波領域が計測精度に 与える影響を排除する.最も典型的なスペクトル ウェイティング関数としては,次式で表される方 形関数があげられる.

$$H_{1}(k_{1},k_{2}) = \begin{cases} 1 & |k_{1}| \leq U_{1}, |k_{2}| \leq U_{2} \\ 0 & otherwise \end{cases}$$
(7)

ただし、 $0 \le U_1 \le M_1$ 、 $0 \le U_2 \le M_2$ である.式(7) で表されるスペクトルウェイティング関数を式(6) を計算する際に $\hat{R}(k_1,k_2)$ に乗ずる. $\hat{R}(k_1,k_2)$ に $H_1(k_1,k_2)$ を乗じた場合の位相限定相関関数 $\hat{r}_1(n_1,n_2)$ は次式で表される. $\hat{r}_1(n_1,n_2)$

$$= \frac{1}{N_1 N_2} \sum_{n_1=-M_1}^{M_1} \sum_{n_2=-M_2}^{M_2} \hat{R}(k_1, k_2) H_1(k_1, k_2) e^{j\frac{2\pi}{N_1}k_1 n_1} e^{j\frac{2\pi}{N_2}k_2 n_2}$$
$$= \frac{\alpha}{N_1 N_2} \frac{\sin\{\frac{V_1}{N_1}\pi(n_1+\delta_1)\}}{\sin\{\frac{\pi}{N_1}(n_1+\delta_1)\}} \frac{\sin\{\frac{V_2}{N_2}\pi(n_2+\delta_2)\}}{\sin\{\frac{\pi}{N_2}(n_2+\delta_2)\}}$$
(8)

ただし, $V_1 = 2U_1 + 1, V_2 = 2U_2 + 1$ である.

スペクトルウェイティング関数は式(7)で表され る方形関数のほかにも,図3に示すようにさまざ まな関数が考えられる.例えば,図3(e)のガウシ アン関数は次式で表され,対応する位相限定相関 関数は式(10)で表される.

 $H_2(k_1, k_2) \cong e^{-2\pi^2 \sigma^2(k_1^2 + k_2^2)}$ (9)

$$\hat{r}_2(n_1, n_2) \cong \frac{1}{2\pi\sigma^2} e^{-(n_1^2 + n_2^2)/2\sigma^2}$$
(10)

ここで、同図に示すように、乗じるスペクトル ウェイティング関数に応じて、位相限定相関関数 のメインローブ幅は変化する.すなわち、スペク トルウェイティング関数を導入する場合、関数フ ィッティングを行う場合のピークモデルは、スペ クトルウェイティング関数に依存して変化する.

また,式(7)で表される方形関数のように周波数 遮断が急激なものよりも,式(9)で表されるガウシ アン関数のように徐々に周波数を遮断していく関数を乗じた方が、精度が高くなることが実験的に 分かっている.

3. 回転・拡大縮小を含む画像の照合

平行移動だけでなく,回転および拡大縮小を含 む画像から,平行移動量,回転量および拡大縮小 率を推定する手法について述べる.

連続空間画像 $\tilde{f}(x_1, x_2) \delta x_1, x_2$ 方向にそれぞれ δ_1, δ_2 だけ微小移動し、 θ だけ回転し、 x_1, x_2 方向 に λ 倍した画像を $\tilde{g}(x_1, x_2)$ とする.これらの画像 を標本化間隔 T_1, T_2 で標本化した離散空間におけ る 2 次元画像を $f(n_1, n_2)$ および $g(n_1, n_2)$ とし、次 式で定義する.

 $f(n_1, n_2) = \tilde{f}(x_1, x_2)$ $g(n_1, n_2) = \tilde{f}(\lambda(x_1 - \delta_1) \cos \theta - \lambda(x_2 - \delta_2) \sin \theta, \quad (11)$ $\lambda(x_1 - \delta_1) \sin \theta + \lambda(x_2 - \delta_2) \cos \theta)$

ただし, $x_1 = n_1 T_1, x_2 = n_2 T_2$ である.以下の議論で は, 簡単のため $T_1 = T_2 = 1$ とする.

まず、これらの 2 次元画像から、角度 θ と拡大 縮小率 λ を算出する.求めた θ と λ に基づき、 $g(n_1,n_2)$ から回転および拡大縮小成分を取り除い た画像 $g'(n_1,n_2)$ と $f(n_1,n_2)$ に対して位相限定相関 関数を用いて、平行移動量(δ_1,δ_2)を算出する.以 下、回転量 θ と拡大縮小率 λ を求める手法につい て述べる.

3.1. 回転量・拡大縮小率推定の原理

回転量および拡大縮小率を推定する手法は, logpolar 変換により回転量および拡大縮小率を平行移 動量に変換するフェーズと,変換画像から位相限 定相関法により平行移動量を算出するフェーズで 構成される.このうち log-polar 変換により回転量 および拡大縮小率を平行移動量に変換する原理を 述べる.

画像 $\tilde{f}(x_1, x_2)$ および $\tilde{g}(x_1, x_2)$ の連続空間におけるフーリエ変換を $\tilde{F}(\Omega_1, \Omega_2)$ および $\tilde{G}(\Omega_1, \Omega_2)$ とする.また, $f(n_1, n_2)$ および $g(n_1, n_2)$ の2次元 DFTを $F(k_1, k_2)$ および $G(k_1, k_2)$ とするとこれらの振幅スペクトルは,次式で近似される.

$$\begin{split} \left| F(k_1, k_2) \right| &\cong \left| \tilde{F}(\Omega_1, \Omega_2) \right| \\ \left| G(k_1, k_2) \right| &\cong \\ \frac{1}{\lambda^2} \left| \tilde{F}(\frac{1}{\lambda}(\Omega_1 \cos \theta - \Omega_2 \sin \theta), \frac{1}{\lambda}(\Omega_1 \sin \theta + \Omega_2 \cos \theta)) \right| \\ \not \geq \dot{\gamma} \leq \dot{\gamma} \leq \dot{\cup}, \end{split}$$
(12)

$$\Omega_1 = \frac{2\pi k_1}{N_1}, \Omega_2 = \frac{2\pi k_2}{N_2}$$

である.

式(12)が近似であるのは、式(4)の場合と同様に、 連続空間画像と離散空間画像に対するフーリエ変 換の性質の違いによる.以下の議論を簡単化する ため $N = N_1 = N_2$, $M = M_1 = M_2 N = 2M_1 + 1$ とす る.振幅スペクトル $|F(k_1,k_2)|$ および $|G(k_1,k_2)|$ を それぞれ極座標変換した画像 $|F_P(m_1,m_2)|$ および $|G_P(m_1,m_2)|$ は次式で近似される.

$$|F_{P}(m_{1},m_{2})| \cong |\widetilde{F}(r_{m_{2}}\cos\phi_{m_{1}},r_{m_{2}}\sin\phi_{m_{1}})|$$

$$|G_{P}(m_{1},m_{2})| \cong$$

$$\frac{1}{\lambda^{2}} |\widetilde{F}(\frac{r_{m_{2}}}{\lambda}\cos(\phi_{m_{1}}+\theta),\frac{r_{m_{2}}}{\lambda}\sin(\phi_{m_{1}}+\theta))|$$
(13)

ただし,

$$\phi_{m_1} = \frac{\pi}{N} m_1, r_{m_2} = m_2 + M$$

である.また、 m_1, m_2 は極座標変換画像の離散座 標であり、 $m_1 = -M, \dots, M, m_2 = -M, \dots, M$ である. ここで、 m_2 方向(半径方向)の軸を log スケール に変換すると、極座標変換画像は、次式で表され る log-polar 変換画像に変換される.

$$\begin{aligned} \left| F_{LP}(m_{1},m_{2}) \right| &\cong \\ \left| \widetilde{F}((\pi \log_{N} r) \cos \phi, (\pi \log_{N} r) \sin \phi) \right| \\ \left| G_{LP}(m_{1},m_{2}) \right| &\cong \\ \frac{1}{\lambda^{2}} \left| \widetilde{F}(\frac{1}{\lambda}((\pi \log_{N} \frac{r_{m_{2}}}{\lambda}) \cos(\phi_{m_{1}} + \theta), (\pi \log_{N} \frac{r_{m_{2}}}{\lambda}) \sin(\phi_{m_{1}} + \theta)) \right| \\ &\stackrel{\text{Tor}}{\to} \frac{1}{\lambda^{2}} \left| \widetilde{F}(\frac{1}{\lambda}((\pi \log_{N} \frac{r_{m_{2}}}{\lambda}) \cos(\phi_{m_{1}} + \theta), (\pi \log_{N} \frac{r_{m_{2}}}{\lambda}) \sin(\phi_{m_{1}} + \theta)) \right| \end{aligned}$$

$$\phi_{m_1} = \frac{\pi}{N} m_1, r_{m_2} = N^{\frac{2m_2 + N}{2N}}$$

であり、対数の底はN としている. 式(14)を変形して整理すると、 $|F_{LP}(m_1,m_2)|$ と $|G_{LP}(m_1,m_2)|$ との間には次式の関係が近似的に成り立つ.

- 4 -

$$\left|G_{LP}(m_1, m_2)\right| \cong \left|F_{LP}(m_1 + \frac{N}{\pi}\theta, m_2 - N\log_N\lambda)\right|$$
(15)

式(15)から明らかである通り、2 枚の画像間の回転 量は m_1 方向の平行移動量に、拡大縮小率は m_2 方 向の平行移動量に変換されている.したがって、 得られた $|F_{LP}(m_1,m_2)| \geq |G_{LP}(m_1,m_2)|$ に対して、位 相限定相関法を適用することにより、回転量およ び拡大縮小率を算出することができる.

3.2. 回転量・拡大縮小率推定のフロー

以上の議論に基づき,実際に回転量および拡大 縮小率を推定するための処理の流れを示す.

[ステップ1]

離散空間画像 $f(n_1, n_2)$, $g(n_1, n_2)$ に対して 2 次 元 DFT を行い、 $F(k_1, k_2)$, $G(k_1, k_2)$ を得る.

[ステップ 2]

 $F(k_1,k_2), G(k_1,k_2)$ の振幅スペクトル $|F(k_1,k_2)|,$ $|G(k_1,k_2)|$ を求める。ただし、ステップ4において、 位相限定相関法は $|F_{LP}(m_1,m_2)|$ および $|G_{LP}(m_1,m_2)|$ を画像とみなして推定を行うが、振 幅スペクトルは低周波領域にエネルギーが集中し てしまう.そこで、全周波数領域(画像全体)の 情報を均等に利用するために $|F(k_1,k_2)|$ および $|G(k_1,k_2)|$ を対数化する.

[ステップ3]

式(14)に基づき $|F_{LP}(m_1,m_2)|$ および $|G_{LP}(m_1,m_2)|$ を求める.このとき, $|F(k_1,k_2)|$ および $|G(k_1,k_2)|$ が離散空間画像であるため、極座標変換に必要な点が離散点間に存在する場合、双線形補間により求める.

[ステップ4]

求めた $|F_{LP}(m_1,m_2)|$ および $|G_{LP}(m_1,m_2)|$ に対し て位相限定相関法を適用し, m_1 および m_2 方向の平 行移動量 δ_{m_1} および δ_{m_2} を求め、次式により回転量 と拡大縮小率を求める.

回転量 $\theta = \frac{\pi}{N} \delta_{m_1}$		(16)
拡大縮小率	$\lambda = N^{\frac{\delta_{m_2}}{N}}$	

3.3. 回転量・拡大縮小率推定の高精度化

回転量および拡大縮小率を高精度に推定するためには、特に、極座標変換の高精度化が重要である.このために以下の高精度化手法が有用である. (i) 第 2.1 節の(i)と同様にして, 画像の S/N 比を向上させる.

(ii) 第 2.1 節の(ii)と同様にして、2 次元 DFT の循 環性質の影響を抑制する.

(iii) ステップ3 で双線形補間により極座標変換画 像に必要な点を求める場合,補間を行う点の間隔 が狭いほど,補間精度が向上する.このため,ス テップ1において2次元 DFT を行う前に,画像の 周囲にゼロ詰めを行い,離散空間画像の分解能を 向上させる.

4. 平行移動量,回転量,拡大縮小率 推定の性能評価

一般的な工業用 CCD カメラから得られた画像 に基づき,平行移動量,回転量および拡大縮小率 推定の実験を行った.実験システムを図4に示す. 対象物体として一辺が 10cm の木製の立方体およ びコルクボード(回転量推定実験)を用いた.各 実験方法は以下の通りである.

4.1. 平行移動量推定実験

対象物体の一面をカメラから約 70cm の距離に, カメラに平行に設置し,移動分解能 0.01mm のマ イクロステージで,画像の水平方向に 0.05mm 間 隔で 53 段階移動した.各段階で加算平均用に 30 枚/秒の時系列画像を撮像している.

撮像した画像から 101×101 ピクセルの大きさ で対象の一部を切り出したものを照合用画像とし, 初期位置の画像を参照画像,各段階での画像を入 力画像として位相限定相関法により平行移動量を 推定した.精度評価において,誤差は次式により 算出した.

$$\varepsilon_{Ti} = \delta_i - a_T \times \Delta_i \tag{17}$$

ただし、 a_T は各段階において推定した移動量 δ_i を 近似する直線の係数であり、 Δ_i はマイクロステー ジの移動量である.

4.2. 回転量推定実験

対象物体の一面をカメラから 70cm の距離に, カメラに平行,かつ,回転中心が画像中心と一致 するように設置し,回転分解能 5'の回転ステージ で,0~90 度まで1 度おきに回転移動した.各段 階で時系列画像を撮像している.

撮像画像から 251×251 ピクセルの大きさで対 象の一部を切り出したものを照合用画像とし,0 度の画像を参照画像,各段階での画像を入力画像 として位相限定相関法により回転量を推定した. 計測誤差は次式により算出した.

$$\varepsilon_{Ri} = \theta_i - \Theta_i \tag{18}$$

ただし、 $\hat{\boldsymbol{\theta}}_i$ は各段階において推定した回転量であり、 $\boldsymbol{\Theta}_i$ は回転ステージの実際の回転量である.

4.3. 拡大縮小率推定実験

対象物体の一面をカメラから約 50cm の距離に, カメラに対して平行に設置し, ラボジャッキによ り 5mm 間隔で 21 段階, カメラから遠ざかる方向 に移動した. 各段階で時系列画像を撮像している. 撮像画像から 251×251 ピクセルの大きさで切り 出した画像を照合用画像とし,初期位置の画像を 参照画像,各段階での画像を入力画像として位相 限定相関法により拡大縮小率を推定した.精度評 価において,誤差は次式により算出した.

$$\varepsilon_{Si} = \hat{\lambda}_i - \frac{b}{b + \Gamma_i} \tag{19}$$

ただし、bは推定した拡大縮小率 λ_i を近似する反 比例関数のパラメータであり、Fig. 1(c)に示すよう にカメラと初期位置の物体との距離を示す.また、 Γ_i はラボジャッキによる対象物体の移動量である.

4.4. 実験結果

以上の実験結果を図 5~図 7 に示す. 図中の "Original"はピクセルレベルの推定, "Fitting" はスペクトルウェイティング関数なしのフィッテ ィングを行った推定, "Optimized"は、スペクト ルウェイティング関数としてガウシアン関数を用 いた場合の推定結果を示す. ガウシアン関数にお けるσは得られた画像の性質により最適値が変わ るため、実験的に最適値を求めた.本実験の範囲 では平行移動量推定ではσ=0.71,回転量推定では σ=0.72,拡大縮小率推定ではσ=0.56 の場合に誤 差が最小となっている.平行移動量推定,回転量 推定,拡大縮小率推定のいずれの場合においても、 スペクトルウェイティング関数の適用による高精 度化が有効であることが確認されている.

また,実験結果から算出した計測精度を Table 1 に示す.計測精度は最大誤差および RMS (Root Mean Square)誤差で評価している.その結果,平行 移動量は 0.0037 ピクセル,回転量は 0.0110 度,拡 大縮小率は 1.29×10⁴ 程度の誤差で推定できるこ とが明らかとなった.拡大縮小率に関しては,誤 差計算の過程で,フィッティングパラメータb, すなわち対象物体からカメラまでの正確な距離も 得ることができる.

表1 推定実験結果

	Maximum error	RMS error
Translation	0.0080 [pixel]	0.0037 [pixel]
Rotation	0.0355 [deg.]	0.0110 [deg.]
Scaling	2.57E-04	1.29E-04

5. 位相限定相関法の応用展開

画像レジストレーションは図 11 に示すように, さまざまな応用が考えられる[7][8]. 位相限定相関 関数を用いたレジストレーションは,実験による 性能評価により,極めて高精度であることが確認 されているため,より多くの応用に対して実用に 耐えうるものと考えられる.本稿では,例として, 現在検討中の応用である3次元計測における視差 計測と超解像イメージングについて簡単に述べる.

5.1.3次元計測への応用

3 次元計測における視差計測とは,図8に示す ように,ステレオビジョンから取り込まれた2枚 の画像の対応する部分の平行移動量を求める問題 である.求めた平行移動量から図9に示すような 三角測量の原理に基づき,3次元座標を復元する.

左カメラ画像 右カメラ画像 図8 対応点探索問題(視差計測)

従来の手法では、レジストレーション精度が 1/10 程度であったために、3 次元計測の精度を挙 げるためにはカメラ間の間隔を大きく取る必要が あり、これによるオクルージョンの発生が問題と なる場合があった.一方、位相限定相関法では、 1/100 ピクセル以上の精度で視差計測が可能であ るため、カメラ間の距離を短くでき、より多くの3 次元座標が復元できる.

実際に3次元計測システムを構築し,実験による評価を行った結果,約70cm先にある物体を1mm 以下の間隔で計測できることを明らかにしている.

5.2. 超解像イメージング

超解像イメージングとは、エイリアシングの発生した複数の低解像度画像から1枚の高解像度画像を復元する技術である.図10に超解像イメージングの原理を示す.

エイリアシングの発生した複数の画像は,画像 取り込みの段階において,相互にサンプリング位 置が異なる.この位置ずれ量を,位相限定相関関 数を用いたレジストレーションで高精度に推定し, リサンプリングすることで,高精細化を実現する.

6. まとめ

本稿では位相限定相関関数を用いた高精度画像 レジストレーションの原理とその高精度化手法に ついて述べた.また,実験に基づく性能評価によ り平行移動量が 0.0037 ピクセル,回転量が 0.0110 度,拡大縮小率が 1.29×10⁴ 程度の誤差と,極め て高精度なレジストレーションが可能であること を明らかにした.また,応用の一例として,3次 元計測と超解像イメージングについて簡単に言及 した.

今後は、3次元計測,超解像イメージングのみ ならず、工業用位置決めセンサなど、他の応用に ついて検討することが重要である.

参考文献

- [1] Lisa Gottesfeld Brown, "A survey of image registration techniques," ACM Computing Surveys, Vol.24, No 4, pp. 325-376, December 1992.
- [2] Qi Tian and Michael N. Huhuns, "Algorithms for sub-pixel registration," Computer Vision, Graphics, and Image Processing, Vol. 35, No.2, pp. 220-233, August 1986.
- [3] C. D. Kuglin and D. C. Hines, "The phase correlation image alignment method," IEEE Int. Conf. on Cybernetics and Society, pp. 163-165, 1975.
- [4] 中島寛,小林孝次,青木孝文,川又政征,樋口龍雄, "位相限定相関法の原理と指紋照合への応用,"第2回 画像センシングシンポジウム講演論文集,pp.15-21, June 1996.
- [5] 佐々木慶文,瀧田健児,青木孝文,樋口龍雄,"回転 およびスケール変化に不変な位相限定画像照合の性 能評価,"計測自動制御学会第45回連合講演会,資料 番号2A2-D1
- [6] T. Kenji, T. Aoki, Y. Sasaki, T. Higuchi, K. Kobayashi, "High-Accuracy Image Registration Based on Phase-Only Correlation and Its Experimental Evaluation," Proc. IEEE Int. Symp. Intelligent Signal Processing and Communication Systems, pp.86-90, November 2002
- [7] M. A. Muquit, T. Kenji, T. Aoki, Y. Sasaki, T. Higuchi, "High-Accuracy Passive 3D Measurement Using Multi-Camera System Based on Phase-Only Correlation," Proc. IEEE Int. Symp. Intelligent Signal Processing and Communication Systems, November 2002
- [8] http://www.higuchi.ecei.tohoku.ac.jp/poc/.

