マニピュレータ逆運動学問題の補間解法に関する研究

Solving Inverse Kinematics Problem Using Interpolation Method

吉原佑器,小野幸彦,高橋隆行,中野栄二

Yuki Yoshihara, Ono Yukihiko Takayuki Takahashi, Eiji Nakano

東北大学

Tohoku University

キーワード: マニピュレータ(manipulator), 逆運動学(inverse kinematics) 補間(interpolation), セル(cell), クラスタリング(clustering)

連絡先: 〒980-8579 仙台市青葉区荒巻字青葉01 東北大学大学院情報科学研究科中野研究室(青葉山キャンパス 機械系) 吉原 佑器, Tel.: (022)217-7025, Fax.: (022)217-7023, E-mail: yoshihara@robotics.is.tohoku.ac.jp

1. はじめに

マニピュレータの制御上,極めて重要な計算の ひとつに逆運動学がある.これは次式のようにマ ニピュレータの手先座標変換行列*H*を実現する関 節角 $\theta = (\theta_1, \cdots, \theta_F)$ (*F*:自由度)を求める計算を いい,マニピュレータの手先をある位置に,所定 の姿勢で移動させる場合に欠かすことのできない 制御上の重要な要素である.

 $\boldsymbol{\theta} = \boldsymbol{f}(\boldsymbol{H}) \tag{1}$

逆運動学は通常マニピュレータの幾何学的な構 造を利用して解析的に導出する場合が多い(解析 法).しかし解析法はマニピュレータの構造に依存 しており,マニピュレータによって解き方が異な る上(汎用性問題),マニピュレータの構造によって は解が存在しない,もしくは一意に定まらない場 合がある(解一意性問題).解析法に付帯するこれ らの問題は逆運動学問題と呼ばれ,過去,解析法 によらない逆運動学解法が数多く研究されてきた. 数値解法としてはヤコビアンの疑似逆行列を利 用して,式(1)を満たす解を繰返しにより導出する ヤコビ法がある.これは一般的な構造のマニピュ レータに適用可能であり,汎用性問題を解決して いるが,局所的最小解に陥りやすく解一意性問題 があるマニピュレータにおいてもただひとつの解 しか求まらない.加えて演算時間を要するのでリ アルタイムの制御には適さないという欠点がある.

BuchbergerアルゴリズムはGrobner基底を利用 することで,どのマニピュレータに対しても同じ 手順で解析解を導出することのできる方法とされ ており¹⁾,汎用性問題を解決しているが,解一意 性問題の解は与えていない.特に解が無数に存在 するようなマニピュレータでは演算時間およびメ モリ消費量が増大することが知られている.これ らの方法は場合によっては強力であるが,固有の 問題を抱えており,上記に挙げた2つの問題を同時 に解決しているとはいいがたい.

そこで本研究では,上記2点の問題を解決する

逆運動学の構築を目標とする.具体的には,手先 座標変換行列Hが与えられると,それに対応する 関節角θを複数求めることができ,しかもマニピュ レータの構造に依存しない汎用性の高い逆運動学 演算システム(Fig.1)の構築を目指す.

Fig. 1 The schematic diagram of target system

2. セル分割補間法

逆運動学の汎用性,解の一意性問題を同時に解決 する手法としてセル分割補間法(CDI:Cell Division Interpolation)を提案する.セル分割補間法とは, 順運動学とクラスタリング,補間を組み合わせた 逆運動学演算システムであり,オフライン演算部 のGeneratorとオンライン演算部のCalculatorから 成っている.それぞれの概念図をFig.2,Fig.3 に示 し,またその各演算要素の役割を次に要約する.

2.1 Generator

- datamaker
 関節角θをθ⁽¹⁾,..,θ^(M)のように変化させ,対応する手先座標変換行列Hを順運動学によりH⁽¹⁾,..,H^(M)と求め,これらの組である H-θデータセットを作成する.
- $\bullet~{\rm celldivider}$

 $H-\theta$ データセットの集合を手先位置 (d_x, d_y, d_z) , 手先姿勢(r, p, y)および逆運動学の解の個数sにより分類し,小領域であるセルをW個作成 する.これを $CELL_{(d)}(d = 1, \dots, W)$ とよぶ.

• interpolator

H-hetaデータセットを補間し,各セル毎に補間 式 $heta_{(d)} = f_{(d)}(H)(d = 1, \dots, W)$ を求める .

2.2 Calculator

• selector

指定された座標変換行列*H*が所属するセルの番号dを選択する.

・ calculator 各セルにおいて $heta_{(d)} = f_{(d)}(H)$ を用い、関節 角 $heta_{(d)}$ を得る .

2.3 セル分割補間法の特徴

セル分割補間法は次の点で従来の逆運動学演算 システムより優れた性能を示すと期待できる.

- 順運動学のみを使用するため,順運動学が簡
 単に求まるほとんどの構造のマニピュレータ
 へ適用可能(汎用性問題の解決).
- 指定手先座標変換行列Hが所属するセルが複数ある場合は,selectorの出力がd1,...,dsと 複数得られ,その結果関節角θも,θ(d1),...,θ(ds) のように有限の複数解として求めることがで きる(解一意性問題の解決).

Fig. 2 The conceptual scheme of Generator

Fig. 3 The conceptual scheme of Calculator

3. セル分割補間法の実装

セル分割補間法を試験的に実装した.そのブロッ ク図をFig.4, Fig.5に,またGeneratorの設計指針 を以下にまとめる.なお対象とするマニピュレー タは,簡単のためシリアルリンクで,かつ解一意 性の問題をもたないよう可動範囲を限定したマニ ピュレータとする.

• datamaker

関節角の可動範囲($\theta_{\min}, \theta_{\max}$)を δ 等分し, $\Delta \theta = (\theta_{\max} - \theta_{\min}) / \delta$ づつ変化させながらH- θ デー タセットを作成する.ただし必ずしも等分と する必要はなく,ここでは簡単のため等分割 で実装した.(Fig.6).

• celldivider

シリアルリンクマニピュレータの場合,デー タセットは比較的マニピュレータ第1関節(Fig.7 の〇点)近傍で密になることが多いが,補間 精度の観点からセル毎のデータセット量に大 きなばらつきがあるのは好ましくない.そこ で第1関節近傍で小さく,遠方で大きくなる ようなセルを作成する.これを満たす簡単 な形状として,マニピュレータ第1関節を中 心としデータセットを内包する中空球を,半 径・経度・緯度方向にそれぞれ△分割した微小 片を採用する.なおデータセットの分類は, 手先位置 (d_x, d_y, d_z) のみに関して行い,簡単 のため手先姿勢(r, p, y)の分割は行わないも のとする.また本実装において対象とするマ ニピュレータは解一意性の問題をもたないの で解の個数。については考えなくてよい.

• interpolator

補間式は次式に示すN次多項式とし,最小自 乗法により係数 C_{ij} を定める $^{2)}$.この方法に よれば補間次数Nの調整によりデータセット の情報量圧縮が期待できる.

_

$$\theta_i(\boldsymbol{H}) = \sum_{j=1}^Q C_{ij} f_j(\boldsymbol{H}) \ (1 \le i \le F) \qquad (2)$$

ここで,

$$f_{j}(\boldsymbol{H}) = r_{11}^{k_{j1}} r_{12}^{k_{j2}} r_{13}^{k_{j3}} d_{x}^{k_{j4}}$$
$$\cdot r_{21}^{k_{j5}} r_{22}^{k_{j6}} r_{23}^{k_{j7}} d_{y}^{k_{j8}} r_{31}^{k_{j9}} r_{32}^{k_{j10}} r_{33}^{k_{j11}} d_{z}^{k_{j12}}$$
(3)

$$\boldsymbol{H} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4)

$$Q = \sum_{k=0}^{N} {}_{12+k-1}C_k =_{12+N} C_N \qquad (5)$$

$$\sum_{s=1}^{12} k_{js} \le N \tag{6}$$

_

Fig. 4 Calculator Class

Fig. 5 Generator Class

Fig. 6 datamaker

Fig. 7 celldivider

4. セル分割補間法の精度評価

xy平面運動をする3自由度マニピュレータにセ ル分割補間法を適用して逆運動学を解き,その精 度評価を行った.

4.1 計算条件

マニピュレータの座標系をFig.8に,諸元および 計算条件をTable.1に示す.本評価では簡単のため マニピュレータの手先を第3関節 θ_3 上におく.また 第2関節 θ_2 の可動範囲を(0,90)[deg]と限定すること で解一意性問題を排除する.

Fig. 8 Spacial 3 axes manipulator

Joint limit	$egin{aligned} & (heta_{1\min}, heta_{1\max}) \ & (heta_{2\min}, heta_{2\max}) \ & (heta_{3\min}, heta_{3\max}) \end{aligned}$	(-90,90)[deg] (0,90)[deg] (-90,90)[deg]
Length	L_1	0.45[m]
	L_2	0.48[m]
Interpolation order	N	2
Cell division param.	Δ	20
Dataset finess param.	δ	80

Table 1 Conditions for CDI method

4.2 評価式

補間法の精度は次式で定義される手先位置誤差 E_p ,手先姿勢誤差 E_r で評価する(Fig.9).

$$E_p = ||\boldsymbol{p} - \boldsymbol{p}_d|| \tag{7}$$

$$E_r = \cos^{-1}(\boldsymbol{n}^T \boldsymbol{n}_d) \tag{8}$$

ここで,

- p_d :指定手先位置ベクトル
- p : CDIにより実現される手先位置ベクトル
- n_d : 指定手先姿勢ベクトル
- n : CDIにより実現される手先姿勢ベクトル

4.3 計算結果

作業領域内に約20000点の計算点をとり,各点に おいて*E_p*, *E_r*を求めた.手先位置誤差分布をFig.10 に,姿勢誤差分布をFig.11に示す.

Fig. 9 Positional error E_p and orientational E_r

Fig. 10 Distribution of positional error E_p

Fig. 11 Distribution of orientational error E_r

4.4 考察

Fig.10によれば手先位置誤差は最大で0.12[mm] 程度であり、これはマニピュレータ全長930[mm]に 対して十分小さな値といえる.また手先姿勢誤差 *E_r*はFig.11より最大で0.35[deg]程度と十分小さな 値が得られた.しかしながら、セルの境界部分で 誤差が大きくなる特性が認められた.このことか らセル分割補間法を実際の軌道計算に適用した場 合、マニピュレータ手先が境界部をまたぐ際の関 節軌道が不連続になると推測できる.

5. セル分割補間法による軌道計算

この節ではマニピュレータに直線の位置目標軌 道を与え,セル分割補間法により実際に関節目標 軌道を計算し,解析法による関節目標軌道と比較 する.

5.1 位置目標軌道の設定

位置目標軌道をxy平面内にFig.12のように設定 する.なおマニピュレータの速度は等速時0.3[m/s] の台形曲線で与え,時間間隔2[ms]の代表点を位置 目標軌道上に設定する.

Fig. 12 Positional desired path

5.2 関節目標軌道計算

位置目標軌道にとった代表点を解析法とセル分 割補間法によって関節目標軌道に変換した.セル 分割補間法による軌道をFig.13に,セル分割補間法 と解析法による軌道の差をFig.14にそれぞれ示す.

Fig. 13 Angular desired path by CDI method

Fig. 14 Difference of analytical and CDI path

5.3 考察

軌道差Fig.14を見ると,セル分割補間法による θ_1, θ_2 の軌道が,解析法とほぼ同じであることが分 かる.一方, θ_3 の軌道には不連続性が認められる. これはcelldividerが手先の位置 (d_x, d_y) のみについ て $H-\theta$ データセットを分類しているので,セルの境 界部で特に大きな誤差を生じるためと考えられる.

6. おわりに

マニピュレータの逆運動学問題(汎用性問題,解 一意性問題)を解決するアルゴリズムとしてセル 分割補間法(CDI)を提案した.簡単なマニピュレー タについて試験的に実装し,精度の評価を行った. この結果マニピュレータ全長に対し約0.001[%]以 下の実用上ほぼ問題ない精度が得られることが確 認できた.また直線軌道を追従する関節目標軌道 を計算して解析法と比較を行い,解析法に対しほ ぼ遜色ない軌道が得られることを確認した.今後 の課題としては以下が挙げられる.

- セル境界部での軌道不連続への対応.
- 複数解のあるマニピュレータへの演算システムの拡張。
- 多種のマニピュレータへの適用,検証.

参考文献

- T.Shimizu and H. Kawasaki : An Analysis for Inverse Kinematics of Robot Manipulators using Grobner basis, Jour. of Robotics and Mechatronics, 9-5, 324/331(1997)
- 2) 新井:多関節マニピュレータにおける演算処理手法,計測自動制御学会論文集,18-1,92/99(1982)