計測自動制御学会東北支部 第 217 回研究集会(2004.7.15) 資料番号 217-13

スノーボード・ターンの運動解析に関する研究

Studies on the Dynamic Analysis of Snowboarding Turn

山田 知明^{*}, 土岐 仁^{**}, 長井 力^{**}

Tomoaki Yamada^{*}, Hitoshi Doki^{**}, Chikara Nagai^{**}

*秋田大学大学院,**秋田大学

^{*}Graduate School of Akita University, ^{**}Akita University

キーワード: スノーボード(snowboard),雪面反力(reaction force from snow),関節トルク(joint torque), 動作解析(motion analysis)

連絡先:〒010-8502 秋田市手形学園町 1-1 秋田大学 工学資源学部 機械工学科 土岐 仁, Tel.:(018)889-2347, Fax.:(018)-837-0405, E-mail:doki@ipc.akita-u.ac.jp

1. はじめに

近年,スノーボードは急速に普及し,幅広い 年齢層から多くの支持を受け,代表的なウィン タースポーツの一つとなっており,ボード,ブ ーツ等の用具や滑走,ターン等の技術も飛躍的 な発展を続けている.一方,スノーボードに関 する研究としては,主に(1)用具の設計・開発, (2) ターン運動中のスノーボーダーのバイオメカ ニクス解析に分けられる.用具の設計・開発で は,ボードの材質・形状・運動性能等の研究が 進められている.スノーボーダーの運動解析に 関しては,屋内におけるスノーボード操作の計 測が行なわれている^{1,2)}.また,スノーボードの ターンのメカニズムを解明するために、ターン 動作のシミュレーション³⁾,解析用スノーボー ドロボットの開発も進められている⁴⁾.しかし, これらの研究では,実際の雪面を滑走するスノ ーボーダーの運動や生体負荷の情報が含まれて

おらず,用具の設計・開発やバイオメカニクス 解析には十分ではないように思われる.実際の 雪面を滑走するスノーボーダーの運動や生体負 荷を計測するためには,冬山での厳しい自然環 境のなかで広範囲にわたって計測を行わなけれ ばならない.

そこで,本研究ではまず,屋外で広範囲のス ノーボ-ダーの運動と生体負荷を計測できるシ ステムを開発し,実際に雪面でのターン動作中 の上体・下肢の身体運動と雪面反力を測定する ことにより,ターンの各局面における身体運動 を定量的に解析・評価することを試みる.これ らの計測システム及び解析手法は,スノーボー ド・ターン運動の特徴を明らかにすると共に, 障害・怪我の予防,新しい用具の開発・評価に 有用となることが期待される.

2. 計測システム

スノーボードのターン動作を運動力学解析す るためには,各関節の角度変位だけではなく, 身体にかかる外力も同時に計測しなければなら ない.ターン動作の特徴を解析するには,雪面 反力,各関節位置座標を計測し上体・下肢関節 の動きを定量的に示す必要がある.

滑走中のスノーボーダーにかかる主な外力と して,重力,空気抵抗,そしてボードを介して 足部に作用する雪面からの反力の 3 つが挙げら れる.この中でも,雪面反力は下肢が発生する 力と等しくなる.本研究では,空気抵抗は無視 できるものとし,雪面反力と反力作用点位置を 求めるために6軸力センサ(IFS-105M50A220-I63, Nitta Co.)を両足のバインディング底部に取り付 けた・センサ取り付け方法として、ボードとバ インディングに特殊な加工をする必要がなく、 またバインディングとボードを自由に交換して 測定することが可能な専用のアダプタを作成し た.ボードとブーツの間に働く3軸方向の力 F_x , F_y , F_z , および各軸周りのモーメント M_x , M_y , *M_z*をセンサで検出する.これにより,図1に 示すように,反力ベクトルを求めることができ る.また,6軸力センサの中心から反力作用点 までの距離 a_x , a_y は, 次式で与えられる.

$$a_x = \frac{-F_x a_z - M_y}{F_z} \tag{1}$$

$$a_y = \frac{-F_y a_z + M_x}{F_z} \tag{2}$$

ここで, a_z はセンサ中心までのz方向の距離で

Fig. 1 6 axis force sensor installed in the boots

ある.

一方, 滑走中の身体運動計測を行なうために 磁気式 3 次元位置センサ (FASTRAK, Polhemus Inc.)を用いた.磁気式3次元位置センサは,コ ントロールユニット,トランスミッタ,複数の レシーバから構成されており、トランスミッタ が発生した電磁場をレシーバで検出すること により,トランスミッタを基準座標系原点とす る複数のレシーバの相対座標を求める装置であ る.実験では,被験者が非磁性体フレームを背 負い,フレームと上体が一体であると見なし, トランスミッタをフレーム底部に取り付けた. また、レシーバを被験者の両大腿側面、バイン ディング後方の4箇所に装着した.これにより 腰部を基準とした滑走中の高精度な姿勢の計測 が可能となった.この磁気式3次元位置センサ から得られるデータと6軸力センサから得られ るデータをもとに関節モーメントを算出する. 本研究で用いた計測システムの構成を図 2 に示 す.計測システムの総重量は約 10kg であるが, 被験者への拘束を減らすため,センサ以外の計 測機器はスキーヤーが背負い並走することにし た.

磁気式 3 次元位置センサでは基準座標が被験 者と共に移動してしまい,ターンの軌跡やター ンがどの局面にあるのかを知ることはできない.

Fig. 2 Measurement system using magnetic position sensor and 6-axis force sensor

そこで,本研究では画像処理式運動計測システ ムと磁気式3次元位置センサを併用し,絶対座 標系における被験者の運動を求めた.画像処理 式運動計測システムとは,複数のビデオカメラ で同時に撮影された映像から反射マーカーの空 間座標を算出するシステムである.利点として は,被験者に機械的な装置を装着する必要が無 いため,基本的に無拘束計測が可能となる.ま たカメラを設置した雪面に基準座標系があるた めスノーボードの滑走軌跡や運動の局面が非常 に分かりやすいということが挙げられる.その 反面,計測範囲が広くなると分解能が落ちると いう欠点を持つ.実験では体幹の姿勢を調べる ための非磁性体フレームに3箇所マーカーを貼 り付け,絶対座標系における腰部の位置と姿勢 を算出する.そして得られた姿勢と磁気センサ から得られる腰部の姿勢から,腰部を基準とす る座標系を絶対座標系に変換することにより, 滑走軌跡やターンの局面の可視化を行なった.

3. 計測実験

3.1 実験条件

開発した実験装置を用いて実験を行った.実 験にはフリースタイル用のボード(サロモン社 製,155cm)を用い,滑走実験は整地された平均 斜度12度の緩斜面の中で実施した.

被験者はスノーボード中級レベル(23 歳,男性, 身長175cm,体重63kg)であり,今回の実験にお いて十分な技術を持っている.ボードのセッテ ィングは,バインディングのアングルを,時計

Fig. 3 Setting of snowboard

回りを正として左足を 15 度,右足を - 6 度でつ ま先を外側に向けた.またセットバックは 0cm とした(図 3).

計測範囲を 10×7×2.5m とし, 被験者が範囲 内を自然な滑り方で, フロントサイドターン, バックサイドターンを行ない範囲内で止まるよ うにした.また他にフロントサイドからバック サイドに移行するギルランデと, バックサイド からフロントサイドへ移行するギルランデの計 4 種類のターンを行った.

Table 1 Experimental condition

Case1	Toe-side turn
Case2	Heel-side turn
Case3	Toe-side turn to heel-side turn
Case4	Heel-side turn to toe-side turn

3.2 ターン中の雪面反力の視覚化

図 4 に,フロントサイドターンの計測結果を スティックピクチャーと共に連続的に示す.

3.3 関節トルク

関節トルクの一例として,図5にフロントサ イドターンにおける両脚の足関節の関節トルク を示す.

4. 結言

本研究では,屋外において滑走中のスノーボ ーダーの運動と生体負荷を広範囲にわたって精 度よく計測することを目標とし,6軸力センサ, 磁気式3次元位置センサと画像処理式システム を用いたスノーボードの運動計測システムを開 発した.実際にフィールド実験を行ない,滑走 中のスノーボーダーの姿勢と雪面からの反力を 同時に計測し,ターンにおける作用力の変化を カベクトルの形で示した.また,計測したスノ ーボーダーの運動データから,人体の力学モデ ルを用いて各関節に作用するモーメントを算出 した.

Fig. 5 Ankle joint torque (Case 1)

3.5

10

0

-10

-20 L

(b) right

0.5

参考文献

10

0

-10

-20

(a) left

0.5

 1) 坂田敏行:スノーボード操作の測定,日本 スキー学会誌,10-1,45/52 (2000)
 2) 坂田敏行,谷本垣,細川健治:スノーボー ドと滑走平面領域に関する実験的研究,スポー

ツ産業学研究,11-1,235/246 (2001)

1.5 Time[s]

2

2.5

3) 坂田敏行,月山雅晴,細川健治:スノーボ ード・ターンのシミュレーションに関する研究, 日本機械学会論文集,65-639,4431/4437 (1999)
4) 清水史郎,長谷川健治:スノーボードロボ ットの開発~足関節の底屈・背屈モデル~,ス キー研究,1-1,9/13 (2003)

1.5 Time[s]

2

2.5

3.5

3