計測自動制御学会東北支部 第217回研究集会 (2004.7.15) 資料番号 217-6

変数変換に対する連続時間システムの2次モードについて

On the Second Order Modes of Continuous Time System under Variable Transformation

今野剛人,阿部正英,川又政征

Taketo Konno, Masahide Abe, Masayuki Kawamata

東北大学 大学院工学研究科 電子工学専攻

Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

キーワード: 変数変換 (variable transformation),連続時間システム (continuous time system), 2次モード (second order modes), アナログフィルタ (analog filter), リアプノフ方程式 (Lyapunov equation)

連絡先: 〒980-8579 仙台市青葉区荒巻字青葉05 東北大学 大学院工学研究科 電子工学専攻 川又研究室 今野剛人, Tel.: (022)217-7095, Fax.: (022)263-9169, E-mail: konno@mk.ecei.tohoku.ac.jp

1. まえがき

2次モードとは,極や零点のようにシステムに固 有の値であり,ハンケル特異値ともよばれる.極 や零点はシステムの安定性や過渡応答などに関し て極めて重要な値であることが広く知られている が,一方2次モードは詳しい性質はあまり明らか にされていない.そこで,その詳しい性質を明ら かにすることが著者らの研究の目的である.

現時点で2次モードは,モデルを低次数化する 際や,丸め誤差および統計的感度の最小値を求め る際に用いられることがわかっている.1次元の離 散時間システム(ディジタルフィルタ)において, 周波数変換に対して2次モードが不変であるとい う性質が証明されており¹⁾,これによってシステ ムの実現と動的性質に関する重要な性質が得られ ている.また,分母分離形2次元離散時間システム において,ある条件を満足する周波数変換を適用 した場合に限り,2次モードの不変性が成立するこ とが証明されている²⁾.

一方,1次元の連続時間システム(アナログフィ ルタ)においても,周波数変換に対する2次モー ドの不変性が証明されている³⁾.連続時間システ ムの周波数変換に用いられる変換変数の一般形は リアクタンス関数,すなわちLC回路の駆動点イン ピーダンス関数である.本稿では,RC回路の駆動 点インピーダンス関数を変換変数に用いた際の2 次モードの解析を行う.

2. システムの表現と2次モード

N次の1入力1出力の安定な連続時間システムを 考える.Fig.1に示すように,このシステムを状態 空間表現で表した場合の係数行列をA,b,c,dとす ると,伝達関数H(s)は係数行列を用いて以下のよ うに表すことができる.

$$H(s) = \boldsymbol{c}(s\boldsymbol{I}_N - \boldsymbol{A})^{-1}\boldsymbol{b} + d \tag{1}$$

Fig. 1 システム

システム(*A*, *b*, *c*, *d*)に対して,次のリアプノフ方程 式の解*K*とWは可制御性グラミアンおよび可観測 性グラミアンとよばれる.

$$AK + KA^t = -bb^t$$
 (2)

$$\boldsymbol{A}^{t}\boldsymbol{W} + \boldsymbol{W}\boldsymbol{A} = -\boldsymbol{c}^{t}\boldsymbol{c} \qquad (3)$$

ここで, (A, b, c, d)が最小実現であれば, 可制御性 グラミアンKと可観測性グラミアンWは正定対称 行列となる.このとき, 行列積KWの固有値はす べて正であり, その平方根 $\theta_i (i = 1, 2, \dots N)$ をこの システムの2次モードという.

RC回路の駆動点インピーダン ス関数を持つシステム

M次のRC回路の駆動点インピーダンス関数1/F(s)
 を考える.RC回路の駆動点インピーダンス関数は
 一般的に以下のように表される関数である⁴⁾.

$$\frac{1}{F(s)} = \frac{c_0}{s} + \sum_{n=1}^{K} \frac{c_{2n-1}}{s + \sigma_{2n-1}} + c_{\infty}$$
(4)

ここで, $c_0 \ge 0, c_{2n-1} > 0, \sigma_{2n-1} > 0$ ($n = 1, 2, \cdots, K \le M$), $c_\infty \ge 0$ である.本報告では, $c_\infty = 0$ とする.

1/F(s)の状態空間表現を $(\alpha, \beta, \gamma, \delta)$ とすると,

$$1/F(s) = \gamma (sI_M - \alpha)^{-1}\beta + \delta$$
 (5)

である.ここでは, $(m{lpha},m{eta},m{\gamma},\delta)$ は最小実現であるとする.

このとき,RC回路の駆動点インピーダンス関数 をもつシステムの状態空間表現に関して,次の定 理が成立することが知られている⁵⁾.

定理1 $1/F(s) = \gamma(sI_M - \alpha)^{-1}\beta + \delta$ がRC回路の駆動点インピーダンス関数であるための必要十分条件は,次の関係を満たす正定対称行列Qと,あるM次元横ベクトルlが存在することである.

$$\boldsymbol{\alpha}^{t}\boldsymbol{Q}^{-1} + \boldsymbol{Q}^{-1}\boldsymbol{\alpha} = -\boldsymbol{l}^{t}\boldsymbol{l} \quad (6)$$
$$\boldsymbol{Q}^{-1}\boldsymbol{\beta} = \boldsymbol{\gamma}^{t} \quad (7)$$

ただし , $\delta = 0$ とする .

4. 変数変換後のシステム

Fig.2のように,N次の伝達関数 $H(s) = c(sI_N - A)^{-1}b + d$ に対して,RC回路の駆動点インピー ダンス関数1/ $F(s) = \gamma(sI_M - \alpha)^{-1}\beta + \delta$ を用いて $s \leftarrow F(s)$ の変数変換を行うことを考える.この変 数変換を行って得られるシステムを $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ として,このシステムを(A, b, c, d)と $(\alpha, \beta, \gamma, \delta)$ を 使って表すことを考える.

いま,H(s)の次数はN次であり,1/F(s)の次数 はM次であるから,H(F(s))の次数はMN次とな る.そこで,MN次の状態変数ベクトルをv(t)と すると,H(G(s))の状態方程式は以下のように与 えられることが知られている¹⁾.

$$\frac{d\boldsymbol{v}(t)}{dt} = \bar{\boldsymbol{A}}\boldsymbol{v}(t) + \bar{\boldsymbol{B}}u(t)$$
(8)

$$y(t) = \bar{\boldsymbol{C}}\boldsymbol{v}(t) + \bar{D}u(t) \tag{9}$$

ここで, $ar{A},ar{B},ar{C},ar{D}$ は以下のように与えられる.

$$\bar{A} = I_N \otimes \alpha + A(I_N - \delta A)^{-1} \otimes \beta \gamma$$
 (10)

$$\bar{\boldsymbol{B}} = (\boldsymbol{I}_N - \delta \boldsymbol{A})^{-1} \boldsymbol{b} \otimes \boldsymbol{\beta}$$
(11)

$$\bar{\boldsymbol{C}} = \boldsymbol{c}(\boldsymbol{I}_N - \delta \boldsymbol{A})^{-1} \otimes \boldsymbol{\gamma}$$
 (12)

$$\bar{D} = d + \delta - \boldsymbol{c} (\boldsymbol{I}_N - \delta \boldsymbol{A})^{-1} \boldsymbol{b}$$
(13)

ここで,RC回路の駆動点インピーダンス関数1/ $F(s) = \gamma(sI_M - \alpha)^{-1}\beta + \delta$ において, $\delta = 0$ であることを用いると,式(10)-(13)は以下のように簡潔になる.

$$\bar{A} = I_N \otimes \alpha + A \otimes \beta \gamma$$
 (14)

 $\bar{\boldsymbol{B}} = \boldsymbol{b} \otimes \boldsymbol{\beta} \tag{15}$

$$\bar{C} = c \otimes \gamma$$
 (16)

$$\bar{D} = d \tag{17}$$

RC回路の駆動点インピーダンス関数1/F(s)による変数変換後のシステム $(\bar{A}, \bar{B}, \bar{C}, \bar{D})$ の可制御性 グラミアンを \bar{K} ,可観測性グラミアンを \bar{W} とする と,これらは以下のリアプノフ方程式の解である.

$$\bar{\boldsymbol{A}}\bar{\boldsymbol{K}} + \bar{\boldsymbol{K}}\bar{\boldsymbol{A}}^t = -\bar{\boldsymbol{B}}\bar{\boldsymbol{B}}^t \qquad (18)$$

$$\bar{\boldsymbol{A}}^t \bar{\boldsymbol{W}} + \bar{\boldsymbol{W}} \bar{\boldsymbol{A}} = -\bar{\boldsymbol{C}}^t \bar{\boldsymbol{C}}$$
(19)

5. 変数変換後の2次モード

本節では,変数変換後の2次モードを求める. 可制御性グラミアンと可観測性グラミアンによ り2次モードは定義されるので,まず変数変換後の 各グラミアンを求める.そして,求められた各グ ラミアンから,変数変換後の2次モードを求める.

5.1 変数変換後の可制御性グラミアン

変数変換後の可制御性グラミアン*底*を求める. まず,リアプノフ方程式を参考に以下の計算を行

う.式の変形においては,定理1の式(6)-(7),お よび式(14)のĀと式(15)のBを用いている.

$$\bar{\boldsymbol{A}}(\boldsymbol{K}\otimes\boldsymbol{Q}) + (\boldsymbol{K}\otimes\boldsymbol{Q})\bar{\boldsymbol{A}}^t + \bar{\boldsymbol{B}}\bar{\boldsymbol{B}}^t$$
 (20)

$$= (I_N \otimes \alpha + A \otimes \beta \gamma)(K \otimes Q) + (K \otimes Q)(I_N \otimes \alpha + A \otimes \beta \gamma)^t + (b \otimes \beta)(b \otimes \beta)^t$$
(21)

$$= (\boldsymbol{I}_N \otimes \boldsymbol{\alpha})(\boldsymbol{K} \otimes \boldsymbol{Q}) + (\boldsymbol{K} \otimes \boldsymbol{Q})(\boldsymbol{I}_N \otimes \boldsymbol{\alpha})^t + (\boldsymbol{A} \otimes \boldsymbol{\beta} \boldsymbol{\gamma})(\boldsymbol{K} \otimes \boldsymbol{Q}) + (\boldsymbol{K} \otimes \boldsymbol{Q})(\boldsymbol{A} \otimes \boldsymbol{\beta} \boldsymbol{\gamma})^t + (\boldsymbol{b} \otimes \boldsymbol{\beta})(\boldsymbol{b}^t \otimes \boldsymbol{\beta}^t)$$
(22)

$$= (\boldsymbol{I}_{N}\boldsymbol{K}) \otimes (\boldsymbol{\alpha}\boldsymbol{Q}) + (\boldsymbol{K}\boldsymbol{I}_{N}) \otimes (\boldsymbol{Q}\boldsymbol{\alpha}^{t}) + (\boldsymbol{A}\boldsymbol{K}) \otimes (\boldsymbol{\beta}\boldsymbol{\gamma}\boldsymbol{Q}) + (\boldsymbol{K}\boldsymbol{A}^{t}) \otimes (\boldsymbol{Q}\boldsymbol{\gamma}^{t}\boldsymbol{\beta}^{t}) + (\boldsymbol{b}\boldsymbol{b}^{t}) \otimes (\boldsymbol{\beta}\boldsymbol{\beta}^{t})$$
(23)

$$= \mathbf{K} \otimes (\boldsymbol{\alpha} \mathbf{Q}) + \mathbf{K} \otimes (\mathbf{Q} \boldsymbol{\alpha}^{t}) \\
+ (\mathbf{A} \mathbf{K}) \otimes (\boldsymbol{\beta} \boldsymbol{\beta}^{t} \mathbf{Q}^{-t} \mathbf{Q}) \\
+ (\mathbf{K} \mathbf{A}^{t}) \otimes (\mathbf{Q} \mathbf{Q}^{-1} \boldsymbol{\beta} \boldsymbol{\beta}^{t}) \\
+ (\mathbf{b} \mathbf{b}^{t}) \otimes (\boldsymbol{\beta} \boldsymbol{\beta}^{t})$$
(24)

$$= \boldsymbol{K} \otimes (\boldsymbol{\alpha} \boldsymbol{Q} + \boldsymbol{Q} \boldsymbol{\alpha}^{t}) \\ + (\boldsymbol{A} \boldsymbol{K}) \otimes (\boldsymbol{\beta} \boldsymbol{\beta}^{t}) + (\boldsymbol{K} \boldsymbol{A}^{t}) \otimes (\boldsymbol{\beta} \boldsymbol{\beta}^{t}) \\ + (\boldsymbol{b} \boldsymbol{b}^{t}) \otimes (\boldsymbol{\beta} \boldsymbol{\beta}^{t})$$
(25)

$$= \mathbf{K} \otimes (-\mathbf{Q}\mathbf{l}^{t}\mathbf{l}\mathbf{Q}) + (\mathbf{A}\mathbf{K} + \mathbf{K}\mathbf{A}^{t} + \mathbf{b}\mathbf{b}^{t}) \otimes (\boldsymbol{\beta}\boldsymbol{\beta}^{t})$$
(26)

$$= -\mathbf{K} \otimes (\mathbf{Q} \mathbf{l}^t \mathbf{l} \mathbf{Q}) + \mathbf{0}_N \otimes (\boldsymbol{\beta} \boldsymbol{\beta}^t)$$
(27)

$$= -K \otimes (Ql^{t}lQ)$$
 (28)

結局,式(20)と式(28)から次式が得られる.

$$\bar{A}(K \otimes Q) + (K \otimes Q)\bar{A}^{t} + \bar{B}\bar{B}^{t}$$
$$= -K \otimes (Ql^{t}lQ) \qquad (29)$$

式(29)から式(18)を引くと,以下の式が得られる.

$$\bar{A}(K \otimes Q - \bar{K}) + (K \otimes Q - \bar{K})\bar{A}^{\iota}$$
$$= -K \otimes (Ql^{t}lQ) \qquad (30)$$

ここで,リアプノフ方程式について以下の安定性 に関する定理がある⁶⁾. 定理2 Aが漸近安定のとき,任意の $Y = Y^t > 0$ に対してリアプノフ方程 式 $A^tX + XA = -Y$ は一意解 $X = X^t > 0$ を持つ.

式(30)と定理2から,以下の式が導ける.

$$\boldsymbol{K} \otimes \boldsymbol{Q} - \bar{\boldsymbol{K}} > 0 \tag{31}$$

5.2 変数変換後の可観測性グラミアン

変数変換後の可観測性グラミアン \bar{W} を求める. 前節と同様,まずリアプノフ方程式を参考に以下 の計算を行う.式の変形においては,定理1の式 (6)-(7),および式(14)の \bar{A} と式(16)の \bar{C} を用いて いる.

$$\bar{\boldsymbol{A}}^{t}(\boldsymbol{W}\otimes\boldsymbol{Q}^{-1}) + (\boldsymbol{W}\otimes\boldsymbol{Q}^{-1})\bar{\boldsymbol{A}} + \bar{\boldsymbol{C}}^{t}\bar{\boldsymbol{C}}$$
(32)

$$= (\boldsymbol{I}_N \otimes \boldsymbol{\alpha} + \boldsymbol{A} \otimes \boldsymbol{\beta} \boldsymbol{\gamma})^t (\boldsymbol{W} \otimes \boldsymbol{Q}^{-1}) + (\boldsymbol{W} \otimes \boldsymbol{Q}^{-1}) (\boldsymbol{I}_N \otimes \boldsymbol{\alpha} + \boldsymbol{A} \otimes \boldsymbol{\beta} \boldsymbol{\gamma}) + (\boldsymbol{c} \otimes \boldsymbol{\gamma})^t (\boldsymbol{c} \otimes \boldsymbol{\gamma})$$
(33)

$$= (\boldsymbol{I}_{N} \otimes \boldsymbol{\alpha})^{t} (\boldsymbol{W} \otimes \boldsymbol{Q}^{-1}) \\ + (\boldsymbol{W} \otimes \boldsymbol{Q}^{-1}) (\boldsymbol{I}_{N} \otimes \boldsymbol{\alpha}) \\ + (\boldsymbol{A} \otimes \boldsymbol{\beta} \boldsymbol{\gamma})^{t} (\boldsymbol{W} \otimes \boldsymbol{Q}^{-1}) \\ + (\boldsymbol{W} \otimes \boldsymbol{Q}^{-1}) (\boldsymbol{A} \otimes \boldsymbol{\beta} \boldsymbol{\gamma}) \\ + (\boldsymbol{c}^{t} \otimes \boldsymbol{\gamma}^{t}) (\boldsymbol{c} \otimes \boldsymbol{\gamma})$$
(34)
$$= (\boldsymbol{I}_{N} \boldsymbol{W}) \otimes (\boldsymbol{\alpha}^{t} \boldsymbol{Q}^{-1}) + (\boldsymbol{W} \boldsymbol{I}_{N}) \otimes (\boldsymbol{Q}^{-1} \boldsymbol{\alpha})$$

+
$$(\mathbf{A}^{t}\mathbf{W}) \otimes (\boldsymbol{\gamma}^{t}\boldsymbol{\beta}^{t}\mathbf{Q}^{-1})$$

+ $(\mathbf{W}\mathbf{A}) \otimes (\mathbf{Q}^{-1}\boldsymbol{\beta}\boldsymbol{\gamma})$
+ $(\mathbf{c}^{t}\mathbf{c}) \otimes (\boldsymbol{\gamma}^{t}\boldsymbol{\gamma})$ (35)

$$= \boldsymbol{W} \otimes (\boldsymbol{\alpha}^{t} \boldsymbol{Q}^{-1}) + \boldsymbol{W} \otimes (\boldsymbol{Q}^{-1} \boldsymbol{\alpha}) \\ + (\boldsymbol{A}^{t} \boldsymbol{W}) \otimes (\boldsymbol{\gamma}^{t} \boldsymbol{\gamma} \boldsymbol{Q}^{t} \boldsymbol{Q}^{-1}) \\ + (\boldsymbol{W} \boldsymbol{A}) \otimes (\boldsymbol{Q}^{-1} \boldsymbol{Q} \boldsymbol{\gamma}^{t} \boldsymbol{\gamma}) \\ + (\boldsymbol{c}^{t} \boldsymbol{c}) \otimes (\boldsymbol{\gamma}^{t} \boldsymbol{\gamma})$$
(36)
$$= \boldsymbol{W} \otimes (\boldsymbol{\alpha}^{t} \boldsymbol{Q}^{-1} + \boldsymbol{Q}^{-1} \boldsymbol{\alpha})$$

+
$$(\boldsymbol{A}^{t}\boldsymbol{W}) \otimes (\boldsymbol{\gamma}^{t}\boldsymbol{\gamma}) + (\boldsymbol{W}\boldsymbol{A}) \otimes (\boldsymbol{\gamma}^{t}\boldsymbol{\gamma})$$

+ $(\boldsymbol{c}^{t}\boldsymbol{c}) \otimes (\boldsymbol{\gamma}^{t}\boldsymbol{\gamma})$ (37)

$$= \boldsymbol{W} \otimes (-\boldsymbol{l}^{t}\boldsymbol{l}) + (\boldsymbol{A}^{t}\boldsymbol{W} + \boldsymbol{W}\boldsymbol{A} + \boldsymbol{c}^{t}\boldsymbol{c}) \otimes (\boldsymbol{\gamma}^{t}\boldsymbol{\gamma})$$
(38)

$$= -\boldsymbol{W} \otimes (\boldsymbol{l}^t \boldsymbol{l}) + \boldsymbol{0}_N \otimes (\boldsymbol{\gamma}^t \boldsymbol{\gamma})$$
(39)

$$= -\boldsymbol{W} \otimes (\boldsymbol{l}^t \boldsymbol{l}) \tag{40}$$

結局,式(32)と式(40)から次式が得られる.

$$\bar{\boldsymbol{A}}^{t}(\boldsymbol{W}\otimes\boldsymbol{Q}^{-1}) + (\boldsymbol{W}\otimes\boldsymbol{Q}^{-1})\bar{\boldsymbol{A}} + \bar{\boldsymbol{C}}^{t}\bar{\boldsymbol{C}}$$
$$= -\boldsymbol{W}\otimes(\boldsymbol{l}^{t}\boldsymbol{l}) \qquad (41)$$

式(41)から式(19)を引くと,以下の式が得られる.

$$\bar{\boldsymbol{A}}^{t}(\boldsymbol{W}\otimes\boldsymbol{Q}^{-1}-\bar{\boldsymbol{W}})+(\boldsymbol{W}\otimes\boldsymbol{Q}^{-1}-\bar{\boldsymbol{W}})\bar{\boldsymbol{A}}$$
$$=-\boldsymbol{W}\otimes(\boldsymbol{l}^{t}\boldsymbol{l})\quad(42)$$

式(42)と前節の定理2から,以下の式が導ける.

$$\boldsymbol{W} \otimes \boldsymbol{Q}^{-1} - \bar{\boldsymbol{W}} > 0 \tag{43}$$

5.3 変数変換後の2次モード

変数変換後の2次モード *θ*を求める.式(31)と式 (43)から,次式が得られる.

$$KW \otimes I_M > \bar{K}\bar{W}$$
 (44)

ここで,正定行列に関して以下の定理がある⁷⁾.

定理3 $n \times n$ の複素行列A, Bは共にエ ルミートであるとし,A, Bの固有値を 大きいものから順に $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ と番号をつけるものとする.A > Bの とき, $\lambda_i(A) > \lambda_i(B)$ $(i = 1, 2, \cdots, n)$ が成立する.

式(44)と定理3,および2次モードの定義より,変 数変換前の2次モード θと変換後の2次モード θの関 係は以下のようになる.

$$\theta_i > \bar{\theta}_j \qquad (45)$$

$$\begin{pmatrix} i = 1, 2, \cdots, N \\ j = M(i-1) + 1, M(i-1) + 2, \cdots, Mi \end{pmatrix}$$

Fig. 3 振幅特性

ただし , $heta_1 \ge heta_2 \ge \cdots \ge heta_N, \ ar heta_1 \ge ar heta_2 \ge \cdots \ge ar heta_M$ である .

以上より, RC回路の駆動点インピーダンス関数 による変数変換対して,連続時間システムの2次 モードは減少することを示した.

6. 計算例

RC回路の駆動点インピーダンス関数1/F(s)によ る変数変換に対して,2次モードが減少する例を 示す.

まず,以下の2次の伝達関数を考える.

$$H(s) = \frac{1}{s^2 + 1.414s + 1.000} \tag{46}$$

この伝達関数は,遮断周波数1[rad/sec]の2次バタ ワースフィルタであり,Fig.3の実線に示すような特 性をもつ.このシステムの状態空間表現(*A*,*b*,*c*,*d*) は以下のように与えられる.

$$\left(\begin{array}{c|c} A & b \\ \hline c & d \end{array}\right) = \left(\begin{array}{c|c} -1.414 & -1.000 & 1 \\ 1.000 & 0 & 0 \\ \hline 0 & 1 & 0 \end{array}\right) \quad (47)$$

このシステムの2次モード θ は次のように得られる.

 $(\theta_1, \theta_2) = (0.683, \ 0.183) \tag{48}$

システム(A, b, c, d)に,式(4)において (c_0, c_1, c_3, d)

 $\sigma_1, \sigma_3) = (1, 2, 3, 4, 5)$ とした $s \leftarrow F(s)$ の変数変換 を適用する.変換後のシステムの特性は図3の点線 のようになり, 2次モード $\bar{\theta}$ は次のように得られる.

 $(\bar{\theta}_1, \bar{\theta}_2, \bar{\theta}_3, \bar{\theta}_4, \bar{\theta}_5, \bar{\theta}_6) = (0.424, 0.131, 0.049,$

0.007, 0.000, 0.000) (49)

したがって,式(48)と式(49)から,RC回路の駆 動点インピーダンス関数1/F(s)による変数変換に 対して,2次モードは減少することが確認できる.

7. あとがき

本報告では, RC回路の駆動点インピーダンス関 数による変数変換対して,連続時間システムの2 次モードは減少することを示した.

参考文献

- C. T. Mullis and R. A. Roberts: Roundoff Noise in Digital Filters: Frequency Transformations and Invariant, IEEE Trans. ASSP-24, 538/550 (1976)
- M. Kawamata, S. Koshita: On the Invariance of Second-Order Modes under Frequency Transformation in 2-D Separable Denominator Digital Filters, Proceedings of IEEE ISCAS, vol.5, 777/780 (2002)
- M. Kawamata: On the Invariance of Second-Order Modes of Continuous-Time Systems under General Frequency Transformation, Proceedings of IEEE ISCAS, vol.1, 505/508 (2003)
- 4) 高橋宣明: よくわかる回路理論,101/104,オーム 社(1995)
- 5) 高橋進一,有本卓: 回路網とシステム理論, 204/206,コロナ社(1974)
- 6) 前田肇: 線形システム, 195/199, 朝倉書店(2001)
- 7) 児玉慎三,須田信英:システム制御のためのマト リクス理論,269/275,計測自動制御学会(1978)