計測自動制御学会東北支部 第 217 回研究集会(2004.7.15)

資料番号 217-9

ステッピングモータの高トルク高精度形マイクロステップ駆動

High-Torque and High-Precision Microstep Drive of a Stepping Motor

藤田武*,秋山宜万*,松尾健史*,三浦武*,谷口敏幸*

Takeshi Fujita*, Yoshikazu Akiyama*, Kenshi Matsuo*, Takeshi Miura*, Toshiyuki Taniguchi*

*秋田大学

*Akita University

キーワード:ステッピングモータ(stepping motor),高トルク(high torque),高精度 (high precision), マイクロステップ駆動(microstep drive)

連絡先:〒010-8502 秋田県秋田市手形学園町 1-1 秋田大学工学資源学部 電気電子工学科
 三浦 武, TEL:(018)889-2329, FAX:(018)837-0406, E-mail:miura@ipc.akita-u.ac.jp

1.はじめに

ステッピングモータは速度の制御と位置 の制御を開ループによって行うことができ るモータである¹⁾.また,ディジタル制御に も適しており,工作機器などのFA機器やコ ピー機,FAX などのOA 機器などにも幅広く 用いられている.

ステッピングモータを駆動する手法の一 つとして,ステップ角を細分化できるマイク ロステップ駆動という手法がある.マイクロ ステップ駆動では,通常トルクリプルの少な い正弦波状の励磁電流波形が用いられるが, この波形ではモータが発生するトルクを使 い切ることはできない.そのためトルクを最 大限に使い切る方法として,励磁電流波形を 台形波とする手法が提案された²⁾.しかし, 台形波での励磁電流の変化は直線状となる ため,トルク曲線の非線形性により各マイク ロステップの停止位置が等間隔でなくなる という問題が生じてしまう.そこで,この台 形波状電流波形での高トルクを維持したま ま,電流の変化部分を調整することによって 角度精度を向上させるという手法が提案さ れた³⁾.しかし,その研究での電流波形は, トルク曲線の正弦波近似に基づいて構築さ れていたため,トルクリプルが生じる実際の 駆動では,誤差が生じてしまう.

そこで,本研究で使用する励磁電流波形は 高トルクを維持するために台形波状の波形 とし,なおかつ,上記の欠点を改善するため に電流の変化する部分を,トルク曲線のデー タを用いずに誤差を低減できる電流の調整 方法を用いて決定した.また,得られた電流 波形でモータを実際に駆動し,諸特性を測定 することによってその有効性を検討した.

1

Fig.1. Experimental system.

2.実験装置

本研究で使用したモータは,2相八イブリ ッド形の PK244-02B(オリエンタルモーター, 基本ステップ角1.8deg.定格6V,0.8A)で ある.

本研究での実験システムを Fig.1 に示す. 駆動回路にはユニポーラ方式の電流制御形 駆動回路を用いた パソコンからの励磁指令 が DA 変換機を介し駆動回路に与えること でステッピングモータが駆動される.回転子 角度は,分解能 6000pulses/rev.のロータリ ーエンコーダ(2 相出力)によって検出され, アップダウン(UD)カウンタボードで 4 逓倍 することによって,最終的に 24000pulses/rev. の信号として測定される.回転子速度を測定 する場合には 出力 3V/1000min⁻¹の DC タコ ジェネレータに接続し、その出力信号がディ ジタルオシロスコープにて測定される.トル クを測定する場合には、トルク検出器により 位相差信号が検出され,トルクコンバータに よりトルク値に変換され測定される.

3. マイクロステップ駆動

ステッピングモータの基本ステップ角を 小さなステップに分割する方法にマイクロ ステップ駆動という手法がある⁴⁾.本来の1 ステップを分割するには,電流波形を Fig.2 のような階段状にする.この図の波形は,1 ステップを8つのマイクロステップに分割 する場合である.マイクロステップ駆動は, フルステップ駆動やハーフステップ駆動よ りもステップ精度と分解能を向上させるこ とが可能であり,ノイズや共振問題を低減す ることが可能であるなどの特徴を有する.

Fig.2. Waveforms of exciting current for microstep drive.

4. 高トルク発生用励磁電流波形の原理

Fig.3 (a)に,2相ステッピングモータのト ルクベクトル図を示す⁵⁾.通常のマイクロス テップ駆動では,トルクリプルを防ぐために 各相の電流波形を正弦波とし,トルクベクト ルが図中の円軌跡となるので,発生トルクは, 最大限に使い切る正方形軌跡に比べて最大 で1/√2までトルクが減少してしまう.トル クを最大限に使い切る正方形軌跡を実現す るためには,台形波状の電流波形となる必要 がある . 例えば A 相- B 相間においては , 回 転子角度(電気角で表示)が $0 ~ \pi/4$ の範囲で は A 相をフル励磁し B 相電流を次第に増加 させ , $\pi/4 ~ \pi/2$ の範囲では B 相をフル励磁し A 相を減少させる必要がある . つまり , Fig.3(b)に示したように , 片方の相がフル励 磁の状態で ,もう片方の相の電流値が 0 とフ ル励磁の間を変化するのであれば ,その経緯 を問わずにトルクベクトルは正方形軌跡を 描く .

(b) current waveform.

台形波電流波形では Fig.3(b)の点線の部分 が直線状となるので,トルク曲線の非線形性 により各マイクロステップの停止位置間隔 が等間隔でなくなってしまう.そのため高ト ルクであっても,精度が低下してしまう.そ こで台形波状のトルクを維持したままで角 度精度を上げるために,電流の変化する部分 を変化させて各マイクロステップの停止位 置間隔を等間隔にする方法が提案された³⁾. その手法ではトルク曲線を次のような正弦 波状と仮定し、

 $T = -K_{T}i_{A}\sin\theta + K_{T}i_{B}\cos\theta \quad \cdots \cdots (1)$

ただし,T:発生トルク, K_{T} :トルク定数

 i_{A} : A 相励磁電流 , i_{B} : B 相励磁電流 回転子の停止位置となるトルク平衡点 θ_{e} で はT = 0となるということから , (1)から次の 関数を得て ,

 $i_{A} = i_{B}(\tan \theta_{e})^{-1}$ または $i_{B} = i_{A} \tan \theta_{e} \dots (2)$ この関数をFig3.(b)の点線の部分に使うこと によって誤差を低減した.(これ以降,この 手法で得られた波形を台形波修正形と呼 ぶ.)しかし,この手法はトルク曲線が理想 の正弦波状を描くという仮定の下に成り立 っており,コギングトルクなどによりトルク リプルが生じてしまう実際のトルク曲線と は誤差が生じるため,回転角度にも誤差が生 じてしまう.

そこで本研究では,正方形軌跡のトルクベ クトルを維持するために台形波状の電流波 形を使用し,なおかつ上記の欠点を改善する ために,トルク曲線のデータを用いずに,励 磁電流を調整することによって回転子の停 止位置間隔を等間隔とすることのできる手 法を用いて,Fig3.(b)の部分の電流波形を決 定した.

5. 電流を調整する方法

台形波状の電流波形でモータを励磁した 場合の回転角度誤差を減少させるために,励 磁電流の変化する部分を決定する手法とし て,本実験では以下の手法を用いた.この手 法は実際のモータの回転角度から角度誤差 を低減する新たな電流波形を構築する手法 であり,調整前よりも角度誤差を低減できる という利点をもつ.ここではその手法につい て例を挙げて簡単に説明する.

Fig.4. technique of current transform.

今,台形波でステッピングモータを駆動し た場合の回転角度の測定結果が Fig.4 のよう な関係にあるとする.この回転角の測定波形 は目標波形と誤差があるので,その差を縮め るように電流の調整を行う.あるステップ S_1 を例にとってみると,実際の回転角度は理 想角度の θ_1 には達しておらず,誤差が生じ ている.しかし,ステップ S_2 での実際の回 転角度は θ_1 であり, S_1 での理想の角度と一致 している.そこで,ステップ S_2 での励磁電 流を S_1 で励磁してやることによってステッ プ S_1 での回転角が θ_1 となり,理想の角度と 一致する.励磁電流の変化が減少の場合でも 同様の操作を行い,例えば S_4 での励磁電流 は S_3 での値となる.

これが今回の実験に使用した方法であり, これをマイクロステップ駆動のすべてのス テップにおいて行うことにより,誤差を低減 する電流波形が得られた.本実験では最初の 回転に 64 分割の台形波を用いて回転角度を 検出し,その測定結果から新たな電流波形を 構築した.

6.実験結果

5 章の手法を用いて,台形波から新たな電流波形を得た結果をFig.5 として示した.

Fig.6 に,静止角度誤差を測定した結果を 示す.提案手法を用いた場合には,その値が 全ての波形の中で一番小さくなるという結 果となった.

Fig.5. Waveforms of exciting current.

Fig.6. Positional errors.

Fig.7. Speed-resonance characteristics.

Fig.8. Speed-torque characteristics.

Fig.7 に,DC タコジェネレータの出力電圧 のリプル分の peak to peak で表した速度振動 特性^{2,5)}を示す.横軸のパルス周波数はフル ステップ駆動に換算した値である(以下すべ て同様).マイクロステップ駆動を行った場 合にはいずれもフルステップ駆動において 現れる不安定現象が抑制されている.提案手 法を用いた場合には200pps 付近の共振点に おける振幅が正弦波駆動の場合より増加し ているものの,それ以外の点ではほぼ正弦波 と変わりのない結果となった.

Fig.8 に,トルクコンバータを用いて測定 した速度トルク特性を示す.提案手法を用い た場合には,台形波駆動の場合とほほ同等の トルクが得られ,1000pps以下の領域では正 弦波駆動の場合に比べてその値が約10%程 度増加している.

7. おわりに

ステッピングモータの高トルクで高精度 なマイクロステップ駆動を行うために電流 を調整し,新たに得られた電流波形でモータ を駆動した.

6章に示した実験結果により,この電流波 形での静止角度誤差は,これまでの手法に比 べ低減されることが示された.また速度振動 特性においても共振の200pps以外では,台 形波や台形波修正形よりも改善されており, ほぼ正弦波の特性に等しいものとなってい る.トルク特性では,台形波駆動の場合のト ルク曲線とほぼ等しく,正弦波よりもトルク が増大していることがわかる.これらのこと から,本手法は高トルクで高精度なマイクロ ステップ駆動の手法として以前の台形波修 正形よりもより有効な手法であるというこ とが実証された.

以上のことから,本手法の適用により簡易 な駆動回路を持つ2相機のシステムの単 純・低コストという特徴を損なうことなく特 性の改善が可能であり,2相機の利用の拡大 に繋がると考えられる.

参考文献

- 1) 見城尚志:小形モータの基礎とマイコン制御,96/99,総合電子出版社(1983)
- 2) 百目鬼英雄:5相ステッピングモータのマ イクロステップ新駆動法の提案,電学論D, 112-8,771/772(1992)
- 三浦武,谷口敏幸:2相ステッピングモー タの高トルク形マイクロステップ駆動,電 学論D,121-12,1297/1298 (2001)
- 4) 見城尚志,菅原晟:ステッピングモータと
 マイコン制御,69/71,総合電子出版社
 (1994)
- 5) 百目鬼英雄:ステッピングモータの使い方, 15/56,工業調査会 (1993)