可変動弁制御システムのスライディングモード制御

Sliding Mode Control for Variable Valve Timing Control Systems

渡邊貴史*, 阿部健一*, 町田憲一**, 岡本直樹**, 宮腰竜**

Takashi Watanabe^{*}, Kenichi Abe^{*}, Kenichi Machida^{**}, Naoki Okamoto^{**}, Ryo Miyakoshi^{**}

*東北大学、**日立製作所オートモティブシステムグループ

*Tohoku University, **Hitachi,Ltd., Automotive System

キーワード: 可変動弁制御(variable valve timing control, VTC), 電磁式VTC(electromagnetic VTC), スライディングモード制御(sliding mode control), ロバスト性(robustness)

連絡先: 〒980-8579 宮城県仙台市青葉区荒巻字青葉6-6-05 東北大学 工学研究科 阿部研究室 渡邊貴史, Tel.: (022)217-7074, Fax.: (022)263-9288, E-mail: takashi@abe.ecei.tohoku.ac.jp

1. はじめに

環境に対する意識が高まる中,自動車の排気ガ スによる大気汚染や地球温暖化への影響が問題視 されるようになり,近年,世界規模で自動車の排 気ガス規制が厳しくなっている。このような問題 を解決するために,自動車エンジンの低エミッショ ン化,低燃費化,高出力化が必要となる。互いに 背反する低エミッション,低燃費,高出力特性を達 成するためには,全回転域,エンジン負荷域にお いて,最適な燃焼を実現しなければならない。そ の一つのアプローチとして連続的にバルブ(動弁) の開閉タイミングをコントロールする方法(VTC) がある¹⁾。従来型VTCには駆動回路として油圧回 路を用いているが,油圧式であるがために低回転・ 低温時等の動作領域には制限があり,性能向上に は限界がある。そこで低回転・低温時から動作可 能かつ,油圧式VTCよりも応答性・制御性の良い VTCを実現するために,電磁式VTCの開発が進め

られている。

本研究では,従来のPID制御より設計に要する 労力が少ないロバストなコントローラの設計を目 的とし,ロバストな制御方法として知られるスラ イディングモード制御の適用を試みる。そして,電 磁式VTCモデルを用いてスライディングモードコ ントローラのロバスト性をシミュレーションによっ て検証する。

2. 電磁式VTCについて

2.1 作動原理

バルブ開閉時期を進めることを進角,遅くする ことを遅角という。電磁式VTCの概念図をFig. 1 に示す。この電磁式VTCではヒステリシスブレー キからのブレーキトルクとリターンスプリングに よる復元トルクのバランスをヒステリシスブレー キコイルに流す電流量により調整し進角・遅角駆 動を行っている。具体的には,ヒステリシスブレー

Fig. 1 VTCの概念図

キの印加電圧を上げることで,ブレーキトルクが リターンスプリングの復元トルクに打ち勝ち進角 する。逆に,印加電圧を下げることで,復元トル クがブレーキトルクよりも大きくなることで遅角 する。そして,ブレーキトルクと復元トルクを釣 り合わせることで角度を保持する。また,ヒステ リシスプレーキはヒステリシス材が磁界の変化に 対して発するトルクを利用したもので非接触なた め耐久性が良いという特徴がある。

2.2 問題点

 非線形特性・パラメータ変動 この電磁式VTCはブレーキを掛けること により進角させるという構造上の理由によ り,進角方向にしかトルクを出せないために 非線形特性を持っている。また,回転数及び 油温によりばね定数が変動するという問題 がある。一般的にシステムに含まれる非線 形特性やパラメータ変動は,制御を困難に させる要因となる。ゆえに,コントローラに は制御対象の持つ非線形特性やパラメータ 変動に対して十分にロバストであることが 求められる。

2) 位置検出周期

この電磁式VTCは基準位置間に一回位置 検出を行う。例えば,直列四気筒エンジンの 場合には,基準位置間隔が180*degCA*,つま り,クランクシャフトが半回転するごとに一 回位置を検出するので,エンジン1回転につ き2回位置検出を行うことになる。また,エ ンジン回転数と位置検出周期の関係はTable 1のようになり,低回転になるほど検出周期 は遅くなることがわかる。現在の制御器の制 御周期が10msなので3000rpm以下では制御 周期より検出周期が大きくなってしまい制御 が困難になる。そこで,位置検出周期内のサ ンプルヒット時の位置を線形近似により補間 する。

Table 1 エンジン回転数と位置検出周期の関係

回転数(rpm)	1200	2400	3000	6000
検出周期(ms)	25	12.5	10	5

2.3 状態方程式

電磁式VTCの機構部およびコイル部の微分方程 式は次のように表せる。

$$J\frac{d^2\theta(t)}{dt^2} + D\frac{d\theta(t)}{dt} + K \cdot \theta(t) = Km \cdot i(t) \qquad (1)$$

$$v(t) = R \cdot i(t) + L \frac{di(t)}{dt} \qquad (2)$$
$$v(t) : 電圧, i(t) : 電流, \theta(t) : 角度$$

VTCの各パラメータはTable 2のようになっている。

	Tał	ole 2 VTCパラメータ
R	:	コイル抵抗[Ω]
L	:	コイルインダクタンス[H]
Km	:	モータトルク定数[Nm/A]
J	:	慣性モーメント[Nms ² /rad]
D	:	摩擦抵抗[Nms/rad]
Κ	:	

(1),(2)式をラプラス変換すると次式が得られる。

$$J \cdot s^2 \Theta(s) + D \cdot s \Theta(s) + K \cdot \Theta(s) = Km \cdot I(s) \quad (3)$$

$$V(s) = R \cdot I(s) + L \cdot sI(s) \quad (4)$$

現在の仕様では電流検出を行っていないので,(3),(4) 式から電流項を除去すると次式が得られる。

$$V(s)/(R+L\cdot s) = (J\cdot s^2 + D\cdot s + K)\cdot\Theta(s)/Km$$
(5)

ここで,(5)式を逆ラプラス変換すると下記の微分 方程式が得られる。

$$\dot{x}(t) = A_c x(t) + b_c v(t) \tag{7}$$

ここで,

	0	1	0		[0]
$A_c =$	0	0	1	$, b_c =$	0
	$-\frac{d}{a}$	$-\frac{c}{a}$	$-\frac{b}{a}$		$\frac{Km}{a}$

スライディングモード制御 3.1 概念

スライディングモード制御はVSS(Variable Structure System)理論に基づくロバストな制御方法と して知られている^{2,3)}。VSSはパラメータ切り換え 型フィードバック制御で,状態空間内に設定した 超平面の両側で制御構造を切り換えるという特徴 がある。また,超平面はその両側で制御入力の切 り換えに使われるために,それを表す関数は切り 換え関数と呼ばれる。

スライディングモードでは,制御対象を超平面上 に拘束するために,システムに含まれるパラメー タの不確定性,非線形性,雑音などに対してロバ ストな制御系を構成できる。

3.2 コントローラの設計

(7)式を制御周期*Ts*で離散化したシステムの状態方程式を次の式で表す。

$$\delta x(k) = A_{\delta} x(k) + b_{\delta} v(k) \tag{8}$$

$$y(k) = c^T x(k) \tag{9}$$

ここで,

$$\begin{split} \delta x(k) &= \frac{x(k+1) - x(k)}{Ts}, \\ A_{\delta} &= \frac{e^{A_c T s} - I_n}{Ts}, \ b_{\delta} &= \frac{1}{Ts} \int_0^{Ts} e^{A_c \tau} b_c d\tau \end{split}$$

スライディングモード制御を適用する前に,出 力であるVTCの角度を目標値r(t)に追従させるた めに積分器を付加し,その出力を新たな状態変数 として系を拡大する(Fig. 2)。この拡大系は積分 器を加えることで,システムの出力値(9)と積分器 の出力を超平面においてバランスさせることで目 標値に追従できるようにしたものである。

Fig. 2 拡大系

積分器の出力wについて

$$\delta w(k) = r(k) - y(k) = -c^T x(k) + r(k) \qquad (10)$$
$$\delta w(k) = \frac{w(k+1) - w(k)}{Ts}$$

とおいて(8)式と(10)式の拡大系を求める。

$$\bar{x}(k) = \begin{bmatrix} w(k) \\ x(k) \end{bmatrix}$$
 とおくと,拡大系は
 $\delta \bar{x}(k) = \bar{A} \bar{x}(k) + \bar{b} v(k) + \bar{h} r(k)$ (11)

となる。ここで,

$$\bar{A} = \begin{bmatrix} 0 & -c^T \\ 0 & A_\delta \end{bmatrix}, \bar{b} = \begin{bmatrix} 0 \\ b_\delta \end{bmatrix}, \bar{h} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

次に,超平面(切り換え関数)を(12)式で定義する。

$$s(k) = c_{\delta} \bar{x}(k) = 0, \quad c_{\delta} \in \mathbb{R}^{1 \times n}$$
(12)

ここで,ベクトル c_δ は次の式を満たす。

$$c_{\delta}\bar{b} = 1 \tag{13}$$

スライディングモードの制御則は次のようにな る⁴⁾。

$$v(k) = -c_{\delta}\bar{A}\bar{x}(k) - c_{\delta}\bar{h}r(k) - \Phi(s(k), X(k)) \quad (14)$$

$$\Phi = \min\left(\frac{|\mathbf{s}(\mathbf{k})|}{|\mathbf{T}\mathbf{s}|}, \sigma + \mathbf{q}|\mathbf{s}(\mathbf{k})| + \mathbf{r} \|\mathbf{X}\|_{1}\right) \operatorname{sgn}(\mathbf{s}(\mathbf{k}))$$
$$X(k) = \begin{bmatrix} \bar{x}(k)\\ \hat{x}(k) \end{bmatrix} = \begin{bmatrix} \bar{x}(k)\\ \bar{x}(k-1) \end{bmatrix}, \hat{x}(0) = \bar{x}(0)$$

但し, σ,q,rはコントローラのパラメータであり, 状態軌道の超平面への到達条件,スライディング モードの存在条件を考慮して決定される。また, 超平面は超平面上でシステムが安定となるように 設計する。

この制御則により,システムを有限時間で任意 の初期状態から超平面へ移動させ漸近安定にでき る。また,超平面の近傍において制御入力を線形 入力に切り換える構造を有しているため,チャタ リングの低減が期待できる。

4. シミュレーション

ここでは,前述したスライディングモードコント ローラの有効性をシミュレーションによって検証す る。コントローラの制御周期は10msであり,また, 前述した位置検出周期と制御周期との差による制 御性を検証するためにエンジン回転数を1200rpm とする。すなわち,シミュレーションでの位置検 出周期は25msとなり,制御周期の2.5倍となって いる。また,位置以外の状態量は後退差分を用い て近似する。目標角度を5degから55degに切り換 えた場合のシミュレーション結果をFig.3~5に示 す。超平面に到達してスライディングモードにな り,目標角度に収束していることが確認できる。

次に,パラメータ変動に対するロバスト性につ いて検証する。この電磁式VTCは,前述したよう に油温,エンジン回転数によりばね定数*K*が変動 してしまう。様々な状況(油温,回転数)で使用す ることを前提としているVTCには,このようなパ ラメータ変動に対してロバストなコントローラが 要求される。そこで,ばね定数をノミナル値の1.3 倍,および0.7倍にした場合のシミュレーション結

Fig. 5 Switching function s(t)

果をFig. 6に示す。パラメータが変動した場合で も,ノミナル値とほぼ同じ軌跡を通っている事が わかる。このように,スライディングモードコン トローラはパラメータ変動に対してロバスト性を 有していることがわかる。

Fig. 6 Robust property of sliding mode controller

また, PIDコントローラを用いた同様なパラメー タ変動に対するシミュレーション結果をFig. 7に 示す。スライディングモードコントローラと異な り, PIDコントローラがパラメータ変動に対して ロバスト性を有していないことが確認できる。

Fig. 7 Robust property of PID controller

5. まとめ

本研究では,制御周期と位置検出周期に差があ る電磁式VTCシステムへのスライディングモード 制御の適用を試みた。そして,数値シミュレーショ ンによってその有効性,及びロバスト性の検証を 行った。設計したコントローラでは,積分器を用い て目標値への追従を実現した。しかし,目標値の 切り換り直後に積分器の出力が目標値のように大 きく変化しないため,切り換え関数の変化も小さ く,応答が遅くなっていると考えられる。実機へ 適用するためには, さらなる応答性の向上が必要 なので,目標値が切り換わったときに切り換え関 数が目標値と同様に変化するようにし,応答性を 向上させる方法5)について現在検討中である。ま た,現在の仕様では電流検出を行っていないため システムの次数は三次になっている。つまり,ス ライディングモード制御を行うためには速度と加 速度までをフィードバックする必要がある。今回 のシミュレーションでは位置を線形近似し,後退 差分を用いて速度,加速度を近似している。つま り,加速度は近似された速度をさらに近似するこ とになり,真値を十分に近似できているとは言い きれない。そこで,各状態量をより良い精度で近 似できるアルゴリズムの検討を行うことで制御性, 応答性の向上を計る必要がある。

参考文献

- Hajime Hosoya, Hidekazu Yoshizawa, Satoru Watanabe, Naoki Tomisawa, Kenichi Abe: Develop ment of new concept control system for valve timing control, SAE 2000 World Congress, 2000-01-1226 (2000)
- 2) 原島文雄,橋本秀樹: Sliding Mode とその応用-システムと制御, 29-2, 94/103 (1985)
- 3) 古田勝久,森貞雅博:離散系のスライディングモー ドコントロール,計測自動制御学会論文集,25-5, 574/578 (1989)
- Goran Golo and Čedomir Milosavljević: Robust discrete-time chatering free sliding mode control, System & Control Letters 41-1, 19/28 (2000)
- Hyeung-sik Choi, Yong-heon Park, Yongsung Cho and Mnho Lee: Global Sliding-Mode Control, IEEE Control Systems Magazine, 21-3, 27/35 (2001)