計測自動制御学会東北支部 第 272 回研究集会(2012.5.30) 資料番号 272-13

省エネルギー型多ループ制御系に関する研究

Peak-power control in a multi-loop-control system which used SSR

○佐々木友紘*,伊藤孝徳*,千葉茂樹*,石橋政三**,伊藤菊一*,長田 洋* ○Yuko Sasaki^{*}, Takanori Ito^{*}, Shigeki Chiba^{*}, Shozo Ishibashi^{**}, Kikukatsu Ito^{*}, Hiroshi Osada^{*}

> *岩手大学 **株式会社チノー * Iwate University, **CHINO Corporation

キーワード:省エネルギー (energy saving), ピーク電力 (peak power), 多ループ制御系 (multi-loop-control system),

連絡先:〒020-8551 岩手県盛岡市上田 4-3-5 岩手大学大学院 工学研究科
 電気電子・情報システム工学専攻 佐々木友紘, Tel: 019-621-6381, E-mail:

1. 序論

工場の電気式加熱炉など、半導体リレー(SSR: Solid State Relay) 駆動型調節計が複数搭載された 多ループ制御系においては、その立ち上がり時に は全 SSR が同時点孤され、そのときのループ数 に比例したピーク電力が必要となる. 2011 年 3 月 11 日以降、我が国の電力供給力は大幅に低下 している. このため、ピーク電力の抑制が求めら れることとなり、工場などではその対策を迫られ ている¹⁾.

SSR 駆動型多ループ制御系においてピーク電 力を抑制する技術には、代表的なものとして位相 制御方式およびタイムシェアリング方式等があ るが²⁾,いずれも負荷へ投入する電力量を大幅に 減らさなくてはならず、立ち上がり時間の大幅な 遅延等につながる. 本研究は,既存の調節計とSSR との間に「SSR パルス変換ユニット」を挿入することで,負荷へ の投入電力量の大幅な減少を伴わずに,ピーク電 力量を抑制する技術を提案するものである.

2. SSR パルス変換ユニット

Fig. 1 は, 4 ループ制御系 (L1~L4) における 調節計, SSR, 負荷, および SSR パルス変換ユニ ットの構成を示す. SSR パルス変換ユニットは調 節計と SSR の間に設置し, 調節計からの PWM 信 号を変換して SSR へ伝送する.

Fig. 2 は, SSR パルス変換ユニットによる SSR 駆動動作概念図を示す. 全ループ中の任意のルー プの SSR 点孤を一時的に停止することにより, ピーク電力を抑制する方法である. 同図では, PWM 信号がアクティブになるタイミングで同時 点孤を3ループまでに制限することで,最大ピーク電力を元の3/4に低減する様子を示している.

Fig. 3 は, SSR パルス変換ユニットのブロック 図を示す. 調節計からの PWM 信号 (PWMin) に 対して,最大同時点弧軸数(以後 AXmax と表現, 100%は全軸同時点弧, 50%は同時点個数 1/2) に 応じて出力する信号 (PWMout) を調整する. な お, SSR 点弧を制御するには,点弧のタイミング を図る必要があり,負荷電源の周波数を知る必要 がある. そのため,負荷電源の周波数検出部が必 要となる.

まず,周波数検出部で負荷電源の周波数を識別 し,その結果を元に PWMin にループ数と AXmax に応じた制御パルスを乗算して PWMout を出力 する. 例えば, 4ループ制御系の場合, 50 Hzの 電源に対しては、20 ms×4 を演算周期として計 算することになる. Fig. 4 は, AXmax と出力の関 係を示す. 4 ループ系での AXmax は, 25% (1 チャンネルのみ同時点弧可),50% (2 チャンネル 同時点弧可),75%(3チャンネル同時点弧可), 100%(全チャンネル同時点弧可)から任意に設 定することが可能である.これにより,系の最大 ピーク電力もまた、25%、50%、75%、100%まで 設定できることになる. なお, 出力信号生成アル ゴリズムとしては、シフトレジスタとランダムが 考えられるが、本試験ではシフトレジスタ方式の 調整アルゴリズムを使用した.

Fig. 5 は, PWM 信号がアクティブの時に点弧 調整で削除された分を, インアクティブになるタ イミングで補償する変換方式を示す. これにより, さらに電力を有効に利用できるようになると思 われる.

ここでは、補償アルゴリズムを搭載しない「基本型」、および補償アルゴリズムを搭載した「補 償型」パルス変換方式による電力量制御に関して 実験を行った.

調節計		SSR	負荷
調節計	SSR	SSR	負荷
調節計	パルス変換	SSR	負荷
調節計	ユニット	SSR	負荷

Fig.1 4ループ制御系における構成

Fig.3 SSR パルス変換ユニットのブロック図

Fig.4 負荷電源周波数 50 Hz の場合の AXmax と出力の関係

Fig. 6 開ループ試験装置の構成

3. 実験と考察

3.1 開ループ制御系

制御負荷対象を半田ごて(4本:L1~L4,20 ~30 W)として、ファンクションジェネレータ より周波数1 Hz (Duty比 50%)の方形波信号を SSR パルス変換ユニットに入力し、負荷の温度応 答、ピーク電力、積算電力を計測した. Fig. 6 は、試験装置の構成を示す.SSR パルス変換ユニ ットは、1チップマイコンである dsPIC を用いて 作製した.dsPIC は DSP を内蔵しているため高い 信号処理能力を有しており、本ユニットにおける リアルタイム信号処理に適している³⁾⁻⁵⁾.なお、 負荷の温度は K 型熱電対で計測し、電力量の計 測はクランプ電力計 (CW121:YOKOGAWA)を 用いて計測した.

Fig. 7 および 8 は, それぞれ基本型および補償 型の開ループ昇温特性を最大同時点弧軸数 AXmax をパラメータとして示す. 同図より, 基 本型では, AXmax が少なくなるとそれに比例し て到達温度も低くなるが,補償型では, AXmax が 50%までは電力抑制を行わない 100%と大きく 違わない到達温度となっていることがわかる.

Fig. 9 は, AXmax と全負荷での総積算電力量の 関係を,基本型と補償型で比較して示す. 同図よ り,基本型の総積算電力量は AXmax に応じた出 力特性となるのに対して,補償型では, AXmax が 50%以上では 100%と同じ電力量となっている ことがわかる. これは,補償型のアルゴリズムが 有効に作用していることを示している.

Fig. 10 は, 負荷 L4 における立ち上がり時間を

Fig. 10 AXmax 対立ち上がり時間特性

AXmax の関数として示す. 同図より,補償型ア ルゴリズムにより制御した負荷の立ち上がり時 間は,基本型のそれに対して最大で1/2程度となっており(AXmax:50%),補償型アルゴリズムを適用することで,ピーク電力を抑制しながらも制御性能を維持できることが示唆された.

3.2 閉ループ制御系

開ループ実験時と同様,制御負荷対象を半田ご て(L1~L4)とし,調節計(DB1000シリーズ: チノー)からの PWM 信号を,SSR パルス変換ユ ニットを経て SSR に供給した.Fig. 11 は試験装 置の構成を示す.ハンダごての温度を K型熱電 対により各調節計へフィードバックし,閉ループ を構成している.なお,調節計の制御アルゴリズ ムは標準的な PID 制御アルゴリズムとした.試 験では,基本型および補償型のアルゴリズムに関 して,同時点弧軸数 AXmax をパラメータとし, 目標温度を(1)20℃→50℃,(2)50℃→100℃, (3)100℃→50℃と3段階に10分間隔で変化さ せ,それぞれの場合の負荷の温度応答,と総積算 電力量を計測した.

Fig. 12 は、負荷 L4 の温度応答特性を示す.閉 ループ制御を行っているため、制御系の特性は基 本的に大きく変動することはない.しかしながら、 AXmax の設定値によっては少なからぬ変化が観 測された.基本型および補償型ともに、AXmax が増加するにつれて電力抑制を行わない AXmax =100%の応答に近づいていくことがわかる.ま た、基本型は AXmax が減少するにつれて応答が 遅くなる傾向を示すのに対して、補償型は AXmax=50%までは大きく応答が遅れることは ない.ただし、AXmax=25%では、補償型の応答 には大きなオーバーシュートが観測された.

Fig. 13 は、昇・降温過程毎の総積算電力量を示 す. 同図より、総積算電力量は基本型と補償型と もに電力抑制を行わない(AXmax = 100%)場合 と大きく変わらないことがわかる. Fig. 9 に示し た、開ループにおける同特性とは大きく異なるが、

これは閉ループによるフィードバック処理の効 果と思われる.

Fig. 14 は, AXmax をパラメータとした立ち上 がり時間特性を昇・降温過程毎に示す.昇温過程 (1 および 2) では, 電力制御を行わない場合

(AXmax = 100%)に比べて基本型では AXmax = 75%以下で,補償型では AXmax = 50%以下で遅れが観察される.特に基本型では AXmax = 25%の場合大幅な遅れが生じている.一方,降温過程

(3) では,逆に基本型のAXmax = 25%が最も速 い応答を示した.これは,降温過程では,電力抑 制アルゴリズムにより電力供給をより素早く減 少させることが出来たためと考えられる.

4. まとめ

以上,多ループ制御系における SSR 点孤制御 方式に関して報告した.提案した点弧制御アルゴ リズムは,ピーク電力を制御対象のループ数に応 じて抑制することができる.

開ループ制御系においては応答特性の低下が 見られるが,補償要素を加えたアルゴリズムでは, 制御性能をある程度維持できることが示唆され た.また,閉ループ制御系においては,電力抑制 を行わない場合と同程度の制御性能を示した.こ れらの結果は,いずれの場合もピーク電力が75% 以下に抑制された上でのことであり,本方式は多 ループ制御系における SSR 点孤制御方式の省エ ネルギー化に貢献できると思われる.また,本方 式は既存の設備に容易に追加できるため,導入コ ストも低く抑えることができると考えられる(特 許出願中).

参考文献

 大嶋健志,電力ピーク対策の円滑化とトップ ランナー制度の拡充,参議院調査室作成資料, 2012

- 計装ネットワークモジュール NX 仕様書, CP-SS1869, アズビル株式会社, 2012
- 3) 岩田利王, dsPIC 基盤で始めるディジタル信号処理, CQ 出版社, 2009
- 4)後閑哲也,電子制御・信号処理のための dsPIC
 活用ガイドブック,技術評論社,2006
- 5)後閑哲也、C言語によるPICプログラミング、 技術評論社、2002