呼吸誘導システムのための赤外線深度センサによる体表面多点 動態計測

Measurement of Thoracoabdominal Surface Motion by using an Infrared Depth Sensor for Respiratory Motion Management System

○塚田 拓也*,市地 慶*,張 曉勇*,本間 経康*,高井 良尋**,吉澤 誠*

○ Takuya Tsukada^{*}, Kei Ichiji^{*}, Xiaoyong Zhang^{*}, Noriyasu Homma^{*}, Yoshihiro Takai^{**}, Makoto Yoshizawa^{*}

*東北大学,**弘前大学

*Tohoku University, **Hirosaki University

キーワード: 呼吸誘導システム (Respiratory Motion Management System), 放射線治療 (Radiation therapy), 赤外線深度センサ (Infrared Depth Sensor), 多点計測 (multi-point measurment)

連絡先: 〒 980-8579 仙台市青葉区荒巻字青葉 6-6-05 電子情報システム・応物系 1 号館 5 階 東北大学 サイバーサイエンスセンター 先端情報技術研究部 吉澤研究室

塚田 拓也, Tel.: (022)795-7130, Fax.: (022)795-7139, E-mail: t-tsukada@yoshizawa.ecei.tohoku.ac.jp

1. はじめに

がんの罹患数は年々増加しており,がん治療 の重要性は益々高まっている¹⁾.がんの主な治 療方法としては手術,化学療法,放射線治療の3 種類が挙げられる.このうち放射線治療は非侵 襲であり,副作用が局所的に抑えられるといっ た利点から利用拡大が期待されている.

放射線治療では治療効果を高め,副作用を可 能な限り少なくするために,十分な線量を腫瘍 に照射することと健康な組織の被ばくを最小限 に抑えることが同時に求められる.これには体 内腫瘍位置の特定とそれに基づく正確・高精度な 照射が必要とされる.しかし,肺腫瘍をはじめ とした呼吸性移動を伴う腫瘍では,治療中に腫 瘍が移動してしまう.このとき,照射位置を固 定した状態で腫瘍への放射線線量を確実に投与 するには照射範囲を大きくする必要がある.一 方,照射範囲を大きくすることで健康な組織の 被ばく線量が増加するため,静的な照射により 腫瘍のみへの必要十分な線量を照射することは 困難である.このため,放射線治療において照 射中の呼吸性移動への対策が求められている²⁾.

呼吸性移動対策の方法としては照射範囲を腫 瘍の移動に合わせる追尾放射線治療³⁾などが 提案されている.しかし呼吸動態の乱れにより, 腫瘍の移動が不規則・不安定であるとそれに応 じて照射の制御は困難となり,呼吸性移動対策 の効果が低減する恐れがある.一方,規則的・安 定な呼吸動態の時には照射制御も相対的に容易 となり,より効果的な治療の実現が期待できる. 呼吸による体内腫瘍位置変動を安定化するた め,呼吸誘導システムが研究・開発されている ⁴⁾⁵⁾⁶⁾.例えば,Venkatらは腹部表面に置いた 赤外線マーカーにより呼吸動態を計測し,その 動きをバイオフィードバックにより誘導するシ ステムを提案し,このシステムにより腹部呼吸 動態が安定化することを報告している⁶⁾.

しかし,体内腫瘍位置変動と体表面の一点の 変動との間に常に一定の関係があるとは限らな いという報告もあり⁷⁾,体内腫瘍の呼吸性移動 を統制するには,従来システムのように腹部の みを考慮する方式では不十分な可能性がある. したがって体表面を多点で計測し,これに基づ いて呼吸誘導を行うことが,体内腫瘍の呼吸性 移動を統制するために必要であると考えられる.

そこで本研究では,呼吸に大きく関わってい ると考えられる胸部と腹部の体表面変動を考慮 可能な呼吸誘導システムのため,体表面多点で の同時計測システムを提案する.本システムは 体表面の呼吸性変動を赤外線深度センサにより 計測する.本システムを用いて先行研究⁶⁾と同 様に腹部呼吸動態に基づく呼吸誘導実験を行い, 胸部・腹部の多点で呼吸動態を計測し,腹部一 点による呼吸誘導が胸部・腹部呼吸動態へどの ような影響を及ぼすか調査する.

4. 体表面多点計測に基づく提案呼吸誘導システム

提案する呼吸誘導システムは、赤外線深度センサと PC 上のソフトウェアによる呼吸計測シ ステムを中心として構成される.システム構成 の概念図を Fig. 1 に示す.

Fig. 1 提案システムの構成

2.1 胸部・腹部の呼吸動態計測システム

2.1.1 赤外線深度センサ

提案システムにおいては,同時に複数箇所の 体表面の変動を計測するため,赤外線深度セン サ(Kinect, Microsoft 社)を用いる.

Kinect には RGB カメラと赤外線プロジェク タ,赤外線カメラによる深度センサとが搭載され ている.Kinect の深度センサは 640×480 pixel, 30 Hz, 0.8 – 4 m の距離範囲を計測可能である. 深度センサの精度は距離 1 m において 2 mm と される⁸⁾.深度データを取得する際,Kinect は 赤外線プロジェクタからランダムドットパター ンを投光する.このとき,投光したパターンは 物体の深度や傾きに応じて,歪んで物体表面に 投影される.パターンに生じた歪みを赤外線カ メラで読み取り,Kinect から投影面までの深度 が推定・取得される.Fig. 2 に RGB カメラか ら得られた画像,Fig. 3 に深度センサから得ら れた画像の例を示す.

Fig. 2 RGB 画像

Fig. 3 深度データ画像

2.1.2 関心領域(ROI)の設定

Kinect から得られる深度データのリアルタイ ム映像をもとに,胴体部分に長方形の Region Of Interest (ROI)を設定する.このとき RGBカ メラのリアルタイム映像も確認しながら胴体以 外を含まず,かつ領域内がすべて胴体となるよ うに注意することで,人体由来の変動のみを計 測できるようにする.

また,胴体 ROI は, Fig. 4のように胸部と腹 部の面積比が 3:2 となるように ROI を自動的に 分割する.ここで面積比は実験的に定めた.図中 左側の赤枠が胸部 ROI,右側の緑枠が腹部 ROI である.

Fig. 4 関心領域設定

2.1.3 深度画像からの胸部・腹部呼吸動態の 抽出

Fig. 3 に示したように深度センサから得られ た画像では,各ピクセルが深度データを持って いる.各ピクセルの深度情報から呼吸動態を計 測する.分割された各 ROI の深度データの空 間平均値を同じ時刻のフレームごとに求め,こ れらを各 ROI の呼吸動態の計測データとする. 設定した胸部の ROI を R_c ,腹部の ROI を R_a として,胸部・腹部の呼吸動態 $\{d_c(t)\}$ (mm), $\{d_a(t)\}$ (mm) はそれぞれ次式で表される.

$$d_{\rm c}(t) = \frac{1}{N_{\rm c}} \sum_{i \in R_{\rm c}} p_i(t) \tag{1}$$

$$d_{\mathbf{a}}(t) = \frac{1}{N_{\mathbf{a}}} \sum_{j \in R_{\mathbf{a}}} p_j(t) \tag{2}$$

ここで,t = 1, 2, ...は時刻インデクス, N_c と N_a はそれぞれ R_c , R_a に含まれるピクセル数, また $p_i(t)$ は時刻 tにおけるピクセル iの深度 データである.

2.2 呼吸誘導システム

取得された呼吸動態をもとに,先行研究⁶⁾に 倣い,呼吸誘導システムを構築した.本呼吸誘 導システムでは,誘導の直前に計測した被験者 の呼吸動態から被験者固有の誘導波形を生成し, これを実際の呼吸動態と共にリアルタイムで被 験者へ提示することで呼吸動態の安定化を実現 する.なお,本実験においては,呼吸の振幅・ 周期のばらつきが小さいときに呼吸動態が安定 化されたものとする.

2.2.1 誘導波形の作成

誘導波形の作成手順を以下に示す.

- 計測した呼吸動態 {d(t)} に窓幅 10 s のゼ ロ位相移動平均フィルタを適用し,呼吸動 態のベースライン変動 b(t) を求める. 腹 部呼吸動態とベースライン変動の様子を Fig. 5 に示す.
- 呼吸動態 {d(t)} からベースライン変動 b(t)
 を除くことで, Fig. 6 のような 0 付近を
 中心に振動する呼吸動態 {x(t)} を得る.

$$x(t) = d(t) - b(t)$$

3) x(t)の立ち上がりの零交差点を検出し,各 零交差点間の呼吸動態から求まる Fig. 7の ようなN 個の呼吸波形 $x_k(n), n = 1, 2, ..., T_k$ (k = 1, 2, ..., N)を抽出する.ここで, Fig. 7のようなの波形をひとつの呼吸波 形とする.また, T_k はk番目の呼吸波形 の周期である.

Fig. 6 ベースライン変動を除外した呼吸動態

- 4) 各呼吸波形 x_k(n), k = 1, 2, ..., N の呼吸 周期 T_k から平均呼吸周期 T を求め,線形 内挿により各呼吸波形 x_k(n) をリサンプ リングし,周期 T の呼吸波形 x'_k(n), n = 1, 2, ..., T 生成する.
- 5) *x*[']_k(*n*) の離散フーリエ変換 *X*_k(*f*) を求める.

 $X_k(f) = F\left[x'_k(n)\right]$

*X_k(f)*の第5高調波以上の周波数成分を カットし、その逆フーリエ変換の和から誘 導波形 g(n), n = 1, 2,..., T を求める.

$$g(n) = \frac{1}{N} \sum_{k=1}^{N} F^{-1} [X_k(f)]$$

Fig. 7 呼吸波形 $x_k(n)$

2.2.2 誘導波形表示

呼吸誘導のため,実験中の被験者には Fig. 8 に示すような呼吸誘導画面が提示される.図中, 青い波形は被験者ごとに生成された誘導波形, 赤い円が被験者の現在の呼吸を表している.時 間とともに誘導波形が右から左へと流れていく ので,被験者は呼吸動態に応じてリアルタイム に上下に変動する赤い円を青い波形に合わせる ように呼吸を行う.

腹部呼吸誘導における腹部・胸 部の同時多点計測実験

腹部呼吸動態に基づく呼吸誘導が,胸部と腹 部の呼吸動態それぞれにどのように影響するか を検証するため,開発したシステムにより,胸 部・腹部の呼吸動態の同時計測を行った.

3.1 実験プロトコル

被験者を仰臥位・安静状態におき,開発した 呼吸誘導システムにより呼吸動態の計測と誘導 を行った.深度センサから被験者までの距離は 1 m とした.この計測距離は,深度センサの計 測誤差が最小となる距離であり,予備実験によ り決定した.基本的な性質を確認するため,実 験は被験者1名(男性23歳)で行った.

今回は腹部の呼吸動態から誘導波形を作成し, 被験者には腹部呼吸動態を誘導波形に合わせる

Fig. 9 実験の流れ

ことで安定化させるよう事前に指示を行った. 実験の流れを Fig. 9 に示す.呼吸誘導の際に用 いる誘導波形は,計測直前の 5 分間の呼吸波形 から作成した.呼吸動態計測は自然呼吸,統制 呼吸,自然呼吸の順に各 5 分間,合計 15 分間行 い,このとき胸部と腹部の各 1 箇所,合計 2 箇 所を同時に計測した.なお,これ以降,誘導前 の自然呼吸を自然呼吸 A,誘導後の自然呼吸を 自然呼吸 B として区別する.

3.2 評価指標

自然呼吸 A と統制呼吸での平均波形からの ばらつきを評価するために,呼吸動態の Root Mean Square (RMS) 値を,各呼吸波形の変位 と周期のそれぞれに関して求め,評価指標として 比較した.評価にあたって,各呼吸波形は2.2.1 節の誘導波形作成の手順と同様に抽出を行った.

変位の RMS 値 (Root Mean Square Displacement, RMSD) は,呼吸の振幅の変動に対応す る指標である. RMSD は,各呼吸波形の呼吸周 期の違いによる影響をなくすため,各呼吸波形 を位相領域 ($\theta = 1, 2, ..., 360^\circ$)に変換した上 で,次式より求めた.

RMSD =
$$\frac{1}{N} \sum_{k=1}^{N} \sqrt{\sum_{\theta=1}^{360} \frac{(x_{k,\theta} - \overline{x}_{\theta})^2}{360}}$$
 (3)

ここで $x_{k,\theta}$ (mm) は位相領域に変換したk番目の呼吸波形の位相 θ での変位, \overline{x}_{θ} (mm) は位相領域に変換した呼吸波形の平均変位,Nは計測・検出された呼吸波形の数である.

また周期の RMS 値(Root Mean Square Period, RMSP)を次式より求めた.

$$\text{RMSP} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left(T_k - \overline{T}\right)^2} \qquad (4)$$

ここで T_k (s)はk番目の呼吸波形の周期, \overline{T} (s)は平均呼吸周期である.

3.3 実験結果と考察

Fig. 10 および Fig. 11 に 15 分間計測した腹 部および胸部の呼吸動態をそれぞれ示す. Fig. 10 からは,300 s から 600 s の統制呼吸下では 腹部の呼吸動態におけるベースラインの変動や, 変位の変動が前後の自然呼吸波形と比較して減 少していることが見てとれる.一方,Fig. 11 の胸部の呼吸動態では,ベースラインの変動や, 変位の変動に顕著な減少は見られない.

この呼吸誘導を行っていた時間帯(300-600 s) の胸部および腹部の呼吸動態を Fig. 12 および Fig. 13 にそれぞれ示す. Fig. 12 と Fig. 13 を 比較すると 540 s から 550 s 付近において,腹 部の呼吸波形は安定しているにも関わらず,胸 部ではベースラインが突然ずれて呼吸波形が大 きく乱れていることが確認できる. このことか らは,胸部の呼吸動態まで安定化するためには 腹部 1 点のみの誘導では不十分である可能性が 示唆される.

自然呼吸 A と統制呼吸での腹部呼吸動態の 違いを詳しく見るため, Fig. 14 (a) および (b) にそれぞれ自然呼吸 A と統制呼吸の腹部 呼吸波形を示す. 図中, 青が各呼吸波形, 黄が 平均呼吸波形, 赤が誘導波形をそれぞれ表して いる. Fig. 14 (a) と (b) を比較すると, 誘導 時には呼吸波形のばらつきが減少していること が見てとれる. 変位の RMS 値を求めると, 自 然呼吸 A では RMSD = 0.7992, 統制呼吸で は RMSD = 0.6068 となり, 誘導時では 24%の 減少が確認された. また周期の RMS 値は, 自 然呼吸 A では RMSP = 0.4120, 統制呼吸では

Fig. 15 胸部呼吸波形比較

RMSP = 0.1195 となり,誘導時では 71%の減 少が確認された.これらのことから腹部呼吸動 態により誘導することで,腹部の呼吸の変位,周 期のばらつきがともに抑制されていることがわ かる.

次に同時計測した胸部呼吸波形動態について, Fig. 15 (a) および (b) にそれぞれ自然呼吸 A と統制呼吸の胸部呼吸波形を示す.変位の RMS 値を求めると,自然呼吸 A では RMSD = 0.1852, 統制呼吸では RMSD = 0.2199 となり,誘導時 に 18%の増加となった.一方,周期の RMS 値は, 自然呼吸 A では RMSP = 0.3835,統制呼吸で は RMSP = 0.1202 となり,誘導時では 69%の 減少が確認された.

以上の結果から,腹部呼吸動態により誘導し た場合,胸部呼吸動態において Fig. 13 のベー スラインのずれだけでなく各呼吸波形の振幅に も乱れが生じることが確認された.このように 胸部・腹部のいずれか一点のみの呼吸動態を計 測し,誘導する方式ではもう一方の呼吸動態に 乱れが生じる場合がある.また,肺上葉にある 腫瘍など,腫瘍の呼吸性移動が腹部よりも胸部 呼吸動態との相関が高い場合には,腹部動態に 基づく呼吸誘導のみでは,体内腫瘍位置変動の 安定化に寄与しない可能性がある.体内腫瘍位 置変動の安定化に向けては,従来行われてきた 体表面一点のみの計測に基づく呼吸誘導だけで はなく,提案システムのような同時多点の計測 に基づく呼吸誘導が有効と考えられる.

4. おわりに

本研究では,放射線治療における呼吸安定化 のための胸部・腹部呼吸動態の多点計測システ ムを開発し,これをもとに呼吸誘導実験を行っ た.実験の結果から,腹部呼吸動態に基づく呼 吸誘導を行うことによって腹部呼吸動態を安定 化できることが確認された.しかし,腹部では 呼吸動態が安定しているにも関わらず胸部で大 きな乱れが生じることも確認された.この結果 からは、腹部の呼吸誘導による胸部への誘導効 果が十分に得られない可能性が示唆される.今 後は、提案した計測システムを用いてより多く の被験者で呼吸誘導を実施し、どのくらいの頻 度や人数で今回のような乱れが発生するかを調 査する必要がある.また、腹部および胸部の双 方を同時に安定化し、体内の腫瘍や臓器の配置 の照射中の再現性を担保できるような新たな呼 吸誘導システムの開発が望まれる.

参考文献

- 1) がん情報サービス http://ganjoho.jp/public/index.html
- 2) P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. V. Herk, S. S. Vedam, J. W. Wong and E. Yorke: The management of respiratory motion oncology report of AAPM Task Group 76, Med. Phys., Vol.33, No. 10, 3874/3900 (2006)
- 3) 公益社団法人 日本放射線腫瘍学会:放射線治 療計画ガイドライン 2012 年版. 金原出版株式会 社 (2012)
- 4) Y. K. Park, S. Kim, II H. Kim, K. Lee and S. J. Ye: Quasi-breath-hold technique using personalized audio-visual biofeedback for respiratory motion management in radiotherapy, Med. Phys., Vol.38, No.6, 3114/3124 (2011)
- S. Pollock, D. Lee, P. Keall and T. Kim: Audiovisual biofeedback improves motion prediction accuracy, Med. Phys., Vol.40, No.4, 041705 (2013)
- 6) R. B. Venkat, A. Sawant, Y. Suh and R. George: Development and preliminary evaluation of a prototype audiovisual biofeedback device incorporating a patient-specific guiding waveform, Phys. Med. Biol., Vol.53, No.11, 197/208 (2008)
- 7) J. D. P. Hoisak, K. E. Sixel, R. Tirona and P. C. F. Cheung: Correlation of lung tumor motion with external surrogate indicators of respiration, Int. J. Radiation Oncology Biol. Phys., Vol. 60, No. 4, 1298/1306 (2004)
- K. Khoshelham and S. O. Elderink: Accuracy and resolution of kinect depth data for indoor mapping, Sensors, Vol. 12, No. 2, 1437 (2012)