計測自動制御学会東北支部 第 295 回研究集会 (2015.6.26) 資料番号 295-2

OpenCL を用いた FPGA ベース画像処理プロセッサの設計

Design of an FPGA-Based Image Processor Using OpenCL

立見駿介, 張山昌論,伊藤康一,青木孝文

Shunsuke TATSUMI, Masanori HARIYAMA, Koichi ITO, Takafumi AOKI

東北大学大学院情報科学研究科,

Graduate School of Information Sciences, Tohoku University,

キーワード: 画像処理 (image processing), 位相限定相関 (Phase-only correlation), 対応付け (correspondence matching), FPGA (FPGA)

連絡先: 〒 980-8579 仙台市青葉区荒巻字青葉 6-6-05 東北大学大学院情報科学研究科 張山昌論, Tel.: (022)795-7153, Fax.: (022)263-9167, E-mail: hariyama@ecei.tohoku.ac.jp

1. はじめに

コンピュータビジョンにおいて,画像対応 付けは重要な基礎技術の1つである¹⁾.特にス テレオビジョンに基づく3次元計測において, ステレオ画像の対応付けは重要な役割を持つ.3 次元計測では,計測精度が対応付け精度に依存 するため,高精度な対応付け手法が必要となる. また,対応付けた点数だけ計測物体の3次元点 が得られるため,物体の詳細な構造を求めるた めには密な対応付けが必要となる.さらに,計 測にかかる処理時間の大部分は対応付け処理で 占められるため,高速な対応付けが実際の応用 で求められている.

本稿では,高精度かつ密な計測を行うために, Phase-Only Correlation (POC)²⁾を用いた画 像対応付け手法を扱う.POCは,画像の離散 フーリエ変換から得られる位相成分を利用した 対応付け手法である.しかし,POCは,離散 フーリエ変換の計算コストが大きいため,密な 計測を行う際に対応付けの計算コストが非常に 大きくなることが問題であった.そのため,対 応付け処理を CPU にマルチスレッドで実装した 場合でも実時間処理が達成できなかった.さら に,CPU 実装では消費電力が大きいという問題 もあった.この問題の解決策として,OpenCL というフレームワークを用いて,処理を GPU (Graphics Processing Unit) に実装する手法が 提案されている³⁾.GPU 実装により,CPU 実 装と比べて最大で5倍程度の高速化が行え,実 時間処理が可能であることが示されている.一 方で消費電力が大きいという問題は依然として 残されている.

本稿では,対応付けを高速かつ低消費電力で 行うために,POC による画像対応付け処理の FPGA (Field Programmable Gate Array) 実装 を提案するとともに,FPGA を用いてステレオ ビジョンに基づく3次元計測システムを試作す る.FPGA アクセラレータを効率よく設計する ために,OpenCL ベースの設計ツールを用いて GPU 向けのコードを再利用する.OpenCL と は,CPU と GPU のような,ヘテロジニアスな 演算器環境において並列プログラミングを行う ためのフレームワークである⁴⁾. これによりタ スク並列とデータ並列に基づく効率の良い並列 演算が実現できる.近年, Altera 社は FPGA 向 けのOpenCLベース設計ツールの提供を開始し た $^{5)}$.しかし, FPGA向け OpenCL では, GPU 向け OpenCL のコードを再利用することはでき るが, GPUとFPGAのアーキテクチャは大き く異なるため, FPGA向けにコードを最適化し なければならないことが問題となる.そこで本 稿では, FPGA 向け OpenCL の設計手法につ いて,データの再利用やパイプライン等の最適 化について述べる.また, FPGA 実装によって, GPU と比べて同程度の処理速度かつ非常に低 消費電力で POC による画像対応付けが行える ことを示す.これにより, FPGAを用いること で高精度な対応付けが組込みシステムでも利用 できるようになる.

2. 位相情報に基づく画像対応付け 手法

Phase-Only Correlation (POC) 関数につ いて簡単に説明する $^{6,7)}$. $f(n) \ge g(n)$ は画像 の 1 次元信号であり,信号長は N = 2M + 1 $(-M \le n \le M)$ であるとする.このとき,正 規化クロスパワースペクトル R(k) は次のよう に定義される.

$$R(k) = \frac{F(k)\overline{G(k)}}{|F(k)\overline{G(k)}|} = e^{j(\theta_F(k) - \theta_G(k))}$$
(1)

ここで, $F(k) \geq G(k)$ はそれぞれ $f(n) \geq g(n)$ を離散フーリエ変換したものであり, $\overline{G(k)}$ は G(k)の複素共役である.また $-M \leq k \leq M$ で ある.1次元の POC 関数 r(n) は, R(k) を逆離 散フーリエ変換することで得られる.2枚の画 像が似ている場合, POC 関数は極めて鋭いピー クを示す.一方で2枚の画像が似ていない場合, ピークの高さは小さくなる.つまり, ピークの 高さは画像対応付けにおいて類似度の尺度を表 し,ピーク位置は画像間の平行移動量を表して いる.さらに,サブピクセルレベルの対応付け 精度向上のために,以下の高精度化手法を用い る:(i)関数フィッティング,(ii)入力信号へ窓関 数の適用,(iii)スペクトル重み付け,(iv)1次 元信号の足し合わせ²⁾.

ステレオ画像を平行化すると,基準点と対応 点の座標の違いは水平方向のみに制限される¹⁾. そのため、1次元 POC を用いて低計算コストで 高精度な対応付けができる.ステレオ画像から 正確な対応を得るため、サブピクセルレベルの 対応付けを行う.さらに、ロバストな対応付け のために画像ピラミッドを用いて粗密探索を行 う(図1)²⁾.pを画像 $I(n_1, n_2)$ における基準点 の位置ベクトルとする.サブピクセルレベルの 対応付け問題とは、画像 $I(n_1, n_2)$ 内の基準点pに対応する、画像 $J(n_1, n_2)$ 内の対応点qの実 数の位置ベクトルを求めることである.以下に 簡単な説明を示す.

Step 1: 各レイヤ $l = 1, 2, \dots, l_{\max} - 1$ におい て,レイヤlの画像である $I_l(n_1, n_2) \ge J_l(n_1, n_2)$ を,以下に示すように再帰的に求める.

$$I_{l}(n_{1}, n_{2}) = \frac{1}{4} \sum_{i_{1}=0}^{1} \sum_{i_{2}=0}^{1} I_{l-1}(2n_{1}+i_{1}, 2n_{2}+i_{2})$$
$$J_{l}(n_{1}, n_{2}) = \frac{1}{4} \sum_{i_{1}=0}^{1} \sum_{i_{2}=0}^{1} J_{l-1}(2n_{1}+i_{1}, 2n_{2}+i_{2})$$

Step 2: 各レイヤ $l = 1, 2, \dots, l_{\max}$ において, 原画像の基準点 p_0 に対応する基準点 $p_l = (p_{l1}, p_{l2})$ を,以下に示すように再帰的に求める.

$$\boldsymbol{p}_{l} = \lfloor \frac{1}{2} \boldsymbol{p}_{l-1} \rfloor = (\lfloor \frac{1}{2} p_{l-1} \rfloor, \lfloor \frac{1}{2} p_{l-1} \rfloor) \quad (2)$$

ここで, [*z*] は *z* を超えない最大の整数を意味 する.

Step 3: 最上位レイヤにおいて $q_{l_{\max}} = p_{l_{\max}}$ であるとする.また $l = l_{\max} - 1$ とおく. Step 4: レイヤ l の画像 $I_l(n_1, n_2)$ と $J_l(n_1, n_2)$ から, p_l と $2q_{l+1}$ を中心とした小さな画像領域(探索ウィンドウ) $f_l(n_1, n_2)$ と $g_l(n_1, n_2)$ をそ

Fig. 1 POC による高精度な画像対応付け手法の概要

れぞれ抜き出す.探索ウィンドウは,信号長 N の1次元信号 L 行から構成される.

Step 5: ピクセルレベルの対応付けを用いて $f_l(n_1, n_2) \geq g_l(n_1, n_2)$ 間の平行移動量を求める. 求めた平行移動量を δ_l とおくと,レイヤlの対 応点 q_l は以下のように定められる.

$$\boldsymbol{q}_l = 2\boldsymbol{q}_{l+1} + \boldsymbol{\delta}_l \tag{3}$$

Step 6: l = l - 1 とおく. $l \ge 0$ である間は Step 4 から Step 6 の処理を繰り返す.

Step 7: 原画像 $I_0(n_1, n_2)$ と $J_0(n_1, n_2)$ から, $p_0 \ge q_0$ を中心とした探索ウィンドウをそれぞ れ抜き出す.サブピクセルレベルの対応付けを 用いて2つのウィンドウ間の平行移動量を求め る.求めた平行移動量を $\delta = (\delta_1, \delta_2)$ とおくと, 対応点は以下のように定められる.

$$\boldsymbol{q} = \boldsymbol{q}_0 + \boldsymbol{\delta} \tag{4}$$

3. FPGA 実装

3.1 FPGA 向け OpenCL の設計手法

OpenCL のプログラミングモデルについて 簡単に説明する.図2にOpenCLのメモリモデ ルを示す.グローバルメモリとコンスタントメ モリは,全ワークアイテムからアクセス可能な メモリである.2つの違いは,グローバルメモリ が読み書き可能であるのに対し,コンスタント メモリは読み込みしか出来ない点である.ロー カルメモリはワークグループで共有されるメモ リであり,プライベートメモリは各ワークアイテ ムで占有されるメモリである.図3にOpenCL のスレッド空間を示す.スレッド空間は階層構 造を持ち,処理全体はワークグループによって 構成され,ワークグループはワークアイテムに よって構成されている.ここで,ワークアイテム はスレッドに対応する.OpenCLにおけるカー ネルの設計は,ワークアイテムが行う処理を記 述することで行う.

FPGA と GPU のアーキテクチャの大きな違 いとして, FPGA は大きなサイズのローカルメ モリを持つことが挙げられる.例えば,近年の ハイエンド FPGA である Stratix V は,50M bits という大きなメモリブロックを持つ.また, FPGA 向け OpenCL では,GPU 向け OpenCL と比べ,より柔軟にローカル,プライベートメ モリを扱うことが出来る.これにより,一度グ ローバルメモリから読み込んだデータを出来る 限り書き戻す事無く使うことで,グローバルメ

Fig. 2 OpenCL におけるメモリモデル

Fig. 3 OpenCL におけるスレッド空間

Fig. 4 FPGA 向け OpenCL で作成されるパイプライン

(b) POC による対応付け

Fig. 5 実装したカーネルの構造

モリの帯域を効率良く使用することが出来る. メモリ構造の柔軟性に基づきデータを最大限に 再利用するために,以下の工夫を行う:

- 窓関数,重み付け関数の係数とFFTで用いる回転因子は全てコンスタントメモリに持つ
- 除算のように計算コストが大きい演算は 出来る限り定数の演算に変換し、係数は コンスタントメモリに持つ
- グローバルメモリからの読み込み処理では,アクセス毎にキャッシュが作られるため,キャッシュを考慮した設計を行う

また,FGPA向けOpneCLとGPU向けOpenCL の違いとして,FPGAではパイプラインが作成 されることが挙げられる.図4に示すように, カーネルの各演算は,各パイプラインステージ で実行される.各スレッドはサイクル毎にパイ プラインへ投入される.パイプラインで処理を 行うことにより,性能(スループット)を保ちつ つメモリ帯域を効率よく扱うことが出来る.こ れに対し,GPU向けOpenCLでは,ワークグ ループ内のスレッドをデータ並列で実行するた め,大きなメモリ帯域が必要となる.また,パ イプライン設計の利点を最大限に生かすため, FPGA向けOpenCLでは"Channel"という機 能が提供されている.Channelを用いると異な

るカーネル間において FIFO バッファを用いた データのやり取りが実現できる.図5に POC を用いた画像対応付けを行う演算器の構成を示 す.各カーネルの機能を以下に示す:

make high layer: 上位レイヤ画像の作成
clip image: 探索ウィンドウの抜き出し
fft1d: 1次元フーリエ変換の計算
eval cps: 正規化クロスパワースペクトルの
計算

reorder: 逆フーリエ変換用のデータ並び替え ifft1d: 1 次元逆フーリエ変換の計算

find peak: 平行移動量の推定

Channel を用いるとデータをグローバルメモリ に書き戻す事無く別のカーネルへ送ることが出 来るため,データの再利用が容易に行える.例 えば,本実装において,図5(b)に示す POC による対応付け処理では,find peak カーネル において基準点数分の対応付け結果が得られる が,結果をグローバルメモリに書き出すこと無 く Channel を通じて clip image カーネルに渡 している.これにより次レイヤにおいて,対応 結果に基づいて探索ウィンドウの抜き出しがで きる.

3.2 評価

POCによる画像対応付け処理を CPU, GPU, および FPGA へ実装した結果を表1に示す.対

	Corei7-3960X (1 thread)	Corei7-3960X (12 threads)	Geforce GTX 580	Geforce GTX 680	FPGA board (Nallatech PCIE-395 D8) ^{*2}
Processing time[ms]	394.42	62.92	15.63	14.43	23.11
Power consumption ^{*1} [W]	61.40	162.50	123.90	141.20	16.60
Power-delay product[W×s]	24.22	10.22	1.94	2.04	0.38

Table 1 CPU, GPU, FPGA 各実装における処理時間と消費電力

*1 消費電力は処理実行時と何も処理を行わない時の差分を表す *2 Nallatech PCIE-395 D8 (Altera 社 Stratix-V FPGA 搭載)

189,756(72%)

Table 2 FPGA 実装におけるリソース使用量							
	Logic	Registers	RAM blocks	DSP blocks			
Stratix V D8	262,400	1,049,600	2,567	1,963			

394,022(36%)

応付けパラメタは,基準点数を10,000点,レイ ヤ数を4,探索ウィンドウサイズを32ピクセル ×15行とした.CPUはIntel社のCorei7-3960X (3.3GHz-3.9GHz)を用いた.GPUはNVIDIA 社のGeforce GTX580とGeforce GTX680を用 いた.FPGAボードはAltera社のStratix Vと 4バンクのDDR3メモリが搭載された,Nallatech社のPCIE-395-D8を用いた.本設計におけ るFPGAの最大動作周波数は167MHzである. 表2に本設計のリソース使用量を示す.上段が FPGA (Stratix V D8)のリソース量,下段がリ ソース使用量を表す.

Implementation

評価尺度として,処理時間,消費電力,電力 遅延時間積を用いる.消費電力は, PC 全体の 消費電力を測定器 (HIOKI AC/DC POWER HiTESTER 3334) を用いて計測した.表1の 消費電力は,処理中の消費電力と何も処理を行 わない時の消費電力の差を表している.電力遅 延時間積は,処理時間と消費電力の積であり,処 理にかかる消費電力量を表している.GPU実装 によって1スレッド CPU 実装の 25~27 倍程度, 12 スレッド CPU 実装の 4.0~4.3 倍程度の高速 化が実現できた.また, FPGA 実装によって1 スレッド CPU 実装の 17 倍程度, 12 スレッド CPU 実装の 2.7 倍程度の高速化が実現できた. 以上により処理時間において, FPGAのメモリ 帯域は GPU よりはるかに小さいにもかかわら ず, FPGA 実装は GPU 実装と同程度の性能が

出ていることが確認できた.電力遅延時間積に おいて,GPU実装によって消費電力を1スレッ ド CPU実装の約8%,12スレッドCPU実装の 約19%まで削減できた.またFPGA実装によっ て消費電力を1スレッドCPU実装の約1.5%, 12スレッドCPU実装の約3.7%,GPU(GTX 580)実装の約20%,GPU(GTX680)実装の約 19%まで削減できた.以上の結果から,FPGA 実装は,CPU実装と比べて非常に低消費電力で あり,GPU実装と比べて同程度の処理速度かつ 非常に低消費電力であることが確認できた.

346(18%)

1,375(54%)

4. 結論

本稿では, OpenCL を用いた POC による 画像対応付け処理の FPGA 実装を提案した.自 由度の高いメモリ構造によるデータの再利用と パイプラインの活用により, FPGA による高速 かつ低消費電力な画像対応付けを実現した.今 後の課題として, GPU 向け OpenCL のコード を FPGA 向けに最適化する手法を設計論として まとめたいと考えている.

参考文献

 R. Szeliski, [Computer Vision: Algorithms and Applications], Springer-Verlag New York Inc., 2010

- 2) T. Shibahara, T. Aoki, H. Nakajima, and K. Kobayashi, "A sub-pixel stereo correspondence technique based on 1D phase-only correlation," *Proc. Int 'l Conf. Image Processing*, V-221-V-224, 2007
- 3) M. Miura, K. Fudano, K. Ito, T. Aoki, H. Takizawa, and H. Kobayashi, "Performance evaluation of phase-based correspondence matching on GPUs," *Proc. SPIE Vol.8856, Applications* of Digital Image Processing XXXVI, 885614, pp.1–9, 2013
- 4) "The OpenCL Specification, Version 1.2." http://www.khronos.org/registry/cl/ specs/opencl-1.2.pdf
- 5) "Altera SDK for OpenCL." https://www. altera.com/products/design-software/ embedded-software-developers/opencl/ overview.html
- 6) C. D. Kuglin, and D. C. Hines, "The phase correlation image alignment method," *Proc. Int'l Conf. Cybernetics and Society*, 163–165, 1975
- 7) K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and K. Kobayashi, "High-accuracy subpixel image registration based on phase-only correlation," *IEICE Trans. Fundamentals* E86-A, 1925–1934, 2003
- D. G. Lowe, "Distinctive image features from scale-invariant keypoints," *Int'l J. Computer* Vision 60(2), 91–110, 2004
- 9) M. Miura, S. Sakai, J. Ishii, K. Ito, and T. Aoki, "An easy-to-use and accurate 3D shape measurement system using two snapshots," *Proc. Int'l Workshop on Advanced Im*age Technology, 1103–1106, 2013