計測自動制御学会東北支部第297回研究集会(2015.10.23) 資料番号 297-7

低剛性の弾性腱による腱駆動ロボットアームの機構と制御

Mechanism and control of an elastic tendon driven robot arm

○関友洋*, 冨樫淳輝*,水戸部和久*

OTomohiro Seki*, Junki Togashi*, Kazuhisa Mitobe* *山形大学 *Yamagata University

キーワード:腱駆動(Tendon driven),

ロボットアーム (Robot arm), 操作インタフェース (Operation interface),

画像処理(Image processing)

連絡先: 〒992-8510山形県米沢市城南4-3-16 山形大学工学部機械システム工学科 6-501 水戸部研究室

水戸部和久, Tel.: (0238)26-3230, Fax.: (0238)26-3205, E-mail: mitobe@yz.yamagata-u.ac.jp

1. 緒言

近年,ロボットによる自動化は製造分野の みならず医療,サービス,農水産業など多岐 にわたる分野で求められている¹⁾²⁾.そして 将来的に非製造分野におけるロボットの需 要は製造分野での需要を追い越すと予想さ れている³⁾.非製造分野の多くでは作業対象 が柔らかい場合や人間に対する接触作業を 行う場合の安全性,さらに未知の作業環境へ の適応性が要求される.また,ロボットは人 間の作業の代替,自動化の他に,遠隔地との 新しいコミュニケーションツールとしても 研究されている⁴⁾⁵⁾.人間の環境で運用され るロボットには高度な安全性が求められる. 本研究は低剛性の腱駆動方式により低コス トでの高い安全性の実現を目指す.

試作したシステムでは画像処理とマーカ を用いてロボットアームの関節角度を取得 する.これにより関節の角度センサを用いな い簡易なアームの設計を行った.また, Kinect を用いたマスタスレーブ方式の操作 インタフェースの開発によりロボットアー ムの直感的な操作が可能となった.

本研究は低剛性の腱駆動ロボットアーム で重量が未知の対象物を把持しながらの位 置制御を問題する.そのため柔軟腱の巻取装 置を改良し,巻取量の増大を図った.巻取量 を大きくすることにより,低い剛性の腱でも 最大手先発生力を大きくできる.したがって, 同じ可搬重量に対して,より低剛性のロボッ トが容易に実現できる.また,位置および 力の制御系への目標を与えるインタフェー スとして,片腕がふさがるマスタスレーブ方 式では入力用デバイスが必要となるため,手 先位置の指定を画像上で行うものを開発し た.また,このカメラ画像から把持物体の重 量を推定することにした.

2.ロボットアームの操作インタフェース 2.1. ロボットアームの概要

ロボットアームは Fig.1 に示すような,上 部の巻取装置から弾性腱で吊るされた構造 になっている.また,環境への適応性を得る ため Fig.2 に示すように関節も弾性腱で構成 している.関節角度は外部カメラとマーカに よって取得し,アームへの電気的な配線を行 なっていない.

Fig.1 Tendon driven robot arm

Fig.2 Elbow joint

2.2. 関節角度の取得

関節角度の取得は Fig.1 に示したようにア ームに取り付けられた 3 色のマーカと,外部 に取り付けられたカメラを用いる. Fig.3 に 示すように RGB 画像を HSV 画像に変換後, 色相(Hue),彩度(Saturation),明度(Value) のそれぞれに対し閾値処理で色領域を摘出する. この処理は OpenCV により行った.摘出したそ れぞれの色領域の色重心を求めて関節座標とす る. 肩関節を原点としたそれぞれのマーカか ら関節角度と手先位置を算出する.関節角度 の算出は,肩関節座標を原点とし,肩関節角 度 $\theta_0(-90^\circ \sim 90^\circ)$ と肘関節角度 $\theta_1(0^\circ \sim 180^\circ)$ をそれぞれ幾何学的に求める.画像の取り込 みは 150[ms]周期で行っている.

Fig.3 Position acquisition from camera image

2.3. 目標関節角度の算出

今回開発した操作インタフェースは, PC 画面のカメラ画像上で目標位置をクリック することでアームの操作を行うものである. カーソルの座標を画像上(ΣP)での座標系か ら肩関節を原点とした座標系(ΣA)に変換す る. 次に逆運動学で目標手先座標から目標関 節角度を求める.

Fig.5 Model of the arm $\,$

- 2 -

腱の伸びがない場合, 巻取装置の回転角度 はアーム長 L_i , アーム上の腱取付点 P_i , 腱 巻取点 P_{mi} , 腱の自然長によって幾何学的に 求められる. 腱の伸びと張力を考慮すれば, 手先力 F_h , 各リンクへの重力 F_{gi} , 各腱に 働く張力 F_{ti} の間の静力学の関係は次式で 表される.

$$\boldsymbol{J}_{ph}{}^{T}\boldsymbol{F}_{h} + \boldsymbol{J}_{gi}{}^{T}\boldsymbol{F}_{gi} + \boldsymbol{J}_{pi}{}^{T}\boldsymbol{F}_{ti} = 0$$

ここで、 J_{ph} 、 J_{gi} 、 J_{pi} は手先位置、各リ ンク重心位置、腱の取り付け位置と関節角度 をそれぞれ関係づけるヤコビ行列である.本 関係より手先に必要な力を発生させるため の腱張力を静力学的に算出できる.

例えば、2本の腱(腱2および腱3)を用いて手先力 F_h を発生させる張力 t_2 、 t_3 は、

$$(t_2 t_3)^T = -(\boldsymbol{J}_{p2}^T \boldsymbol{v}_2 \boldsymbol{J}_{p3}^T \boldsymbol{v}_3)^{-1} (\boldsymbol{J}_{ph}^T \boldsymbol{F}_h + \boldsymbol{J}_{ai}^T \boldsymbol{F}_{ai})$$

で与えられる.ここで、ベクトル v_i は 腱 方向の単位ベクトルであり、腱取付点と腱巻 取点 P_i , P_{mi} から

$$\boldsymbol{v}_i = \frac{\overrightarrow{P_i P_{mi}}}{|\overrightarrow{P_i P_{mi}}|}$$

で与えられる.ただし,張力は正の組み合わ せである必要がある.

2.5. 巻取角度の指令

腱の弾性を利用して張力を操作するため に腱の剛性値が必要である.そこで,腱に 100[g]ずつ 1000[g]になるまで錘を吊るして 腱長と荷重の関係を調べた. Fig.6 のように なる.

Fig.6 Change of tendon length

今回使用する腱の剛性は平均で 0.017[N/mm]から 0.028[N/mm]と非常に小 さいが, ヒステリシスを含む非線形性がある. したがって精密な力制御の為には非線形性 を考慮して巻取角度を決定する必要がある.

2.6. 手先質量の算出

カメラ画像から求めた関節角度を θ_{ri} と すると, θ_{ri} から手先位置 P_{hri} , 腱取付位置 P_{ri} , 重心位置 P_{gri} を算出できる. 巻取装置角度 θ_{mi} と腱巻取点 P_{mi} は変わらないので, 腱張力 はバネ定数 K_i , 巻取装置半径rを用いて

 $J_{prh}^{T}(F_{h}+F_{gh})+J_{gri}^{T}F_{gi}+J_{pri}^{T}F_{tri}=0$ が成り立つ. したがって

$$F_{gh} = -(J_{prh}^{T})^{-1}(J_{gri}^{T}F_{gi} + J_{pri}^{T}F_{tri}) - F_{h}$$

より手先荷重を求めることが出来る.

3. 卷取装置

3.1. 装置概要

開発した巻取装置を Fig.7 に示す.装置は 直径 100[mm]の螺旋状にプーリを配置した 構造になっており,1.5 周分腱を巻き取れる ようになっている.

Fig.7 Winding drum

3.2. システム概要

開発した巻取装置のシステムの構成図を Fig.8 に示す. PC 側のプログラムの開発環 境は Visual Studio 2010 を用いる. また, マイコン側のプログラムの開発環境は MPLAB を用いる.

3.3. 卷取量

今回製作した巻取装置は回転角度が -180°~+360°となっている.従来の動作範 囲が-180°~+180°の場合と比べ,同じ可搬 重量に対しどの程度腱の剛性を低く設計出 来るか確認する.目標姿勢は(a) θ_0 = 30°, θ_1 = 30°,(b) θ_0 = -30°, θ_1 = 60°とす る.目標手先力は物を持ち上げる場合を想定 しy方向に3[N]とする.腱剛性を変数とし て 0.005[N/mm]から 0.1[N/mm]まで与える. それぞれの腱剛性に対し,目標姿勢,目標手 先力を満たすために必要な巻取装置の巻取 角度を算出する.結果は Fig.9 に示す.

今回選択した二つの姿勢は、どちらも張力 のかかる腱として腱 2, 腱 3 が選択されてい るが、(a)では腱 2 に、(b)では腱 3 に主に負 荷が掛かると分かる.(a)において巻取量が 180°までの場合、腱剛性が 0.1[N/mm]とな っても手先力を実現不可能である.巻取量が 360°まで有ればおよそ0.02[N/mm]で実現可 能であり、巻取量増加の効果が顕著に見て取 れる.(b)では巻取量180°でも 0.03[N/mm] 程度でも十分に手先力を実現可能である.た だし巻取量360°ならおよそ0.01[N/mm]で実 現できるため巻取量が多い方が柔軟な腱を 用いることが可能だと分かる.

4. 動作検証

4.1 巻取装置検証

巻取装置はプーリの外周部が 100[mm]の 円周に接するように,60°毎に配置している. そのため、厳密には巻胴外周は円ではない. そこで実際に腱を巻き取って巻取装置の半 径を確認する. 腱をアームから外し、腱に 100[g]の錘を吊るして-120°から 240°ま で 30°ずつ装置を回転させ腱の巻取を行う. 巻取点から錘までの腱長を巻き取りと巻き 戻しの2通りで測定し,巻胴が円であると仮 定して算出した半径と巻き角の関係を Fig.10に示す.

算出した半径はほぼ定数だが 100[mm]よ りもわずかに小さい.これは巻取装置のプー リが六角形状に配置されているためである. 平均の半径は 94[mm]となるので巻取角度 の算出にはこれを用いる.

4.2 動作検証

アームの目標姿勢をステップ状に変化さ せて位置制御を行った.実験の条件として無 負荷状態での位置決め制御(a),無負荷でア ームの自重を補償した位置決め制御(b),手 先に 200[g]の錘を吊り下げた状態でアーム に対する重力のみ補償した位置決め制御(c), 手先に 200[g]の錘を吊り下げた状態でアー ムとおもりの重力を補償した位置決め制御 (d)をそれぞれ行う.なお錘以外の条件を可 能な限り等しくするため,検証は目標関節角 度を直接与えて行う. $\theta_0 = 0^\circ, \theta_1 = 0^\circ \epsilon i$ 期 姿 勢 と し $\theta_0 = -45^\circ, \theta_1 = 45^\circ \rightarrow$ $\theta_0 = -30^\circ, \theta_1 = 60^\circ \rightarrow \theta_0 = 0^\circ, \theta_1 = 45^\circ \rightarrow$ $\theta_0 = 30^\circ, \theta_1 = 60^\circ \geq 6$ 秒間隔で変化させる. 結果を Fig.11 に示す.

初期姿勢においてθ₁が10°程度となって いるのは腱 1 の巻取位置によるものである. (a)は重力の影響を受けて下方向に誤差が出 ている.(b)は(a)に比べ重力による誤差が小 さくなっており重力補償の効果が確認でき る.(c)と(b)の比較から手先質量の影響が分 かる.手先に対する 200[g]の荷重はこのアー ムにとって無視出来ない.(c)も(a)のように アームが下側に偏っているが,その誤差は (a)よりも大きい.動作後に振動が発生して いるが,これは錘が手先に吊るされているか らである.(d)と(c)の比較から手先にかか る負荷を補償出来ていることが分かる.完全 に目標に一致しないのは, 腱の伸びが大きく なると計算上の腱剛性と実際の腱剛性の差 が無視出来なくなるためだと考えられる.

4.3. 手先質量推定検証

カメラの画像より手先にかかる物体の重 力の推定を行った.条件(a)では 100[g]を, 条件(b)では 200[g]を与えた.目標関節角度 とカメラ画像から得た関節角度を Fig.12 に, 手先質量の算出結果を Fig.13 に示す.

目標姿勢はステップ状に与えているため, 目標姿勢が変わる瞬間に大きな質量が検出 されている. 質量推定の関係式は静力学的に しか成り立たないため,動作中のデータは扱 うことが出来ない.また,初期姿勢は $\theta_0 = 0^\circ, \theta_1 = 0^\circ$ なのでy方向の力を算出す ることは出来ない.ただし初期姿勢のずれか ら-170[g]と算出されている.推定の誤差は は最大で実際の手先質量の±50[g]程度とな っている.この誤差の原因も腱の剛性の算出 値と実際値の差によるものと考えられる.ま た,肩関節がアームに与える力を考慮してい ないこと,カメラ画像から算出した関節角度 の精度も誤差の原因として考えられる.

5. 結言

改良した巻取装置を用いたロボットアー ムの動作検証を行った.位置決め制御におい て予想した十分な精度が出せることを確認 した.また,把持物体の質量が分かっている 場合,あらかじめ手先力として与えることで 補償出来ることを確認した.カメラ画像より 質量の推定も可能であるが,現状では姿勢に よっては大きな誤差が出てしまう.

課題としては, 腱の負荷が大きくなった際 の精度の低さが挙げられる. 腱の非線形性へ の対策が必要である.また,開発したインタ フェースは現状手先力をキーボードから与 える必要があり, 直感的とは言えない. 直感 的な操作を可能とする操作インタフェース や操作デバイスを開発する必要がある.

- 6 -

参考文献

 1)中村 仁彦,川上 洋生,岡田 昌史:低侵襲 心臓外科手術を支援する臓器運動補償型手術 ロボットシステム,日本ロボット学会誌,18-6, 873-881(2000)
2)津川 定之:自動車の自動運転-その特長 と課題-,研究報告モバイルコンピューティ ングとユビキタス通信(MBL),51-9, 1-8(2009)
3)経済産業省産業機械課:2012 年ロボット 産業の市場動向,17-19(2013)
4)妻木 勇一:ヒューマンインターフェース

におけるウェアラブルロボット技術,日本ロ ボット学会誌, 32-8, 709-712(2014)

5) 和田 侑也, 田中 一晶, 中西 英之: 遠隔握 手:ビデオ会議と触覚提示デバイスの一体化に よるソーシャルテレプレゼンスの強化, 情報 処理学会論文誌, 56-4, 1228-1236(2015)