複室型シリコンを用いた MEMS 原子磁力計セルの開発

Microfabricated Potassium vapor cells with double-chamber for MEMS atomic magnetometers

○稲岡徹*,石田健太郎*,山端夏海*,大坊真洋*

○ Toru Inaoka*, Kentaro Ishida*, Natsumi Yamahata*, Masahiro Daibo*

*岩手大学

*Iwate University

キーワード: 原子磁力計 (atomic magnetometer), 光ポンピング (optical pumping), アルカリ金属原子 蒸気セル (alkali metal vapor cell), アジ化カリウム (Potassium azide), フェムト秒レーザー (femtosecond laser), 陽極接合 (anodic bonding)

 連絡先: 〒 020-8551 盛岡市上田 4-3-5 岩手大学 工学部 電気電子・情報システム工学科 大坊研究室 大坊真洋, Tel.: (019)621-6983, E-mail: daibo@iwate-u.ac.jp

1. 序論

今日, 医療・バイオ, 分析・検査, 環境・資源調 査など様々な分野で磁場計測技術は活用されて いる. その中でも特に, 人間の脳や心臓が発す る微弱磁場を計測できる技術が求められている.

これまでに微弱磁場計測技術として SQUID 磁束計が最も広く利用されてきた. SQUID 磁 束計は装置が大型で,液体ヘリウムを用いて冷 却し,極低温で動作させる必要があるといった 理由などから,運用コストが高いという側面が あった.そこで,SQUID 磁束計に代わる磁場計 測技術として現在注目されているデバイスが光 ポンピング原子磁力計¹⁾である.

アルカリ金属原子に円偏光のレーザーを照射 し、外部から磁場を加えると電子が歳差運動す る.この現象を利用することにより、偏光の変 化として磁場を超高感度に検出することができ る.これを原理としたデバイスが光ポンピング 原子磁力計である.光ポンピング原子磁力計は 室温付近で動作し,高感度な磁場の検出が期待 でき,省電力化,小型化が可能である.

本研究では光ポンピング原子磁力計の小型化 を目的とし,光ポンピング原子磁力計の性能を 決定するアルカリ金属原子蒸気を封入する容器 である,セルを Micro Electro Mechanical System(MEMS) 技術を用いて小型化した. 今回, MEMS 技術によるセル製作プロセスならびに, 吸収スペクトル計測および磁場応答信号の測定 によってセルの評価を行った結果について報告 する.

2. 複室型 MEMS 原子磁力計セル

純粋なアルカリ金属は揮発性が高く,高い温 度を必要とする MEMS セル製作プロセスと適 合性が低かったが,アジ化アルカリ金属を用いる 方法が提案された²⁾.アジ化アルカリ金属に深

図 1 複室型シリコンを用いた小型のカリウム原子 磁力計セル

紫外線を照射することによってアルカリ金属と 窒素に分解できることが報告されているが^{2,3)}, 深紫外線はホウケイ酸ガラスを数%程度しか透 過しない.そのため、セルを封止した後に紫外線 を照射し、アジ化アルカリ金属を分解すること は困難と考えられる.そこで我々はフェムト秒 レーザーが引き起こす多光子吸収を利用し、そ の問題点を解決した⁴⁾.

しかし、アジ化カリウムにレーザーを照射す ると、アジ化カリウムが付着しているガラス表 面が曇る.この曇りによって、原子磁力計のセル として使用する際にレーザー光が減光する課題 があった.このことが磁場感度の向上を妨げて いると我々は推測し、本研究ではアジ化カリウ ムを封入する部分と原子磁力計のセルとして機 能する検出部分を分ける複室型の MEMS 原子 磁力計セル (図 1)を製作した.

本研究で開発した複室型の MEMS 原子磁力

計セルの製作プロセスを図2に示す.まず,原子 磁力計として機能する部分(以下,プローブ室) とアルカリ金属を封入する部分(以下,分解室) を連結させたパターンを形成するために,フォ トリソグラフィー技術によってシリコン基板を 加工する[図2(a-e)].今回,大きさが10 mm × 10 mm × 0.75 mmのシリコン基板を使用した. プローブ室には直径3.4 mmの円形の貫通孔を, 分解室には一辺の長さ1.8 mmの正方形の貫通 孔となるように設計した.また,プローブ室と 分解室を連結させ,複室型とするために,幅0.2 mm,長さ2.1 mmの通路を設けた.

まず, 反応性イオンエッチングを行うために, シリコン基板にレジストを塗布する [図 2(a)]. 次 にプリベークを行い, レジストを硬化させた後, 紫外線の露光によってフォトマスクのパターン をレジストに転写する [図 2(b)]. ポストエクス ポジャーベーク, 現像, ハードベークを行った後, 反応性イオンエッチングを行い, シリコン基板 にパターンを形成させる [図 2(c-d)]. エッチング 終了後, レジストおよびエッチングストッパー となった酸化膜を剥離する [図 2(e)].

次に, 陽極接合による MEMS セルの封止工程 について説明する [図 2(f-i)]. 図 2(e) のシリコン 基板およびホウケイ酸ガラス基板を洗浄した後,

図 2 MEMS セル製作プロセス (図 1 の Z-Z' 断面). (a) シリコン基板ヘレジストの塗布, (b) 紫外線の露光 によるパターンの転写, (c)(d) 反応性イオンエッチングによるパターンの作製, (e) レジストの剥離, (f) 陽極 接合による *preform* 基板の作製, (g) アジ化カリウムの封入, (h) 陽極接合によるセルの封止, (i) フェムト秒 レーザー照射によるアジ化カリウムの分解

図3 複室型 MEMS セルの吸収スペクトル

陽極接合し, preform 基板をつくる [図 2(f)]. 各 基板の洗浄方法について説明する.ホウケイ酸 ガラス基板はホットアセトンで脱脂を行う.シ リコン基板はホットアセトンによる脱脂に加え, 硫酸と30%過酸化水素水の混合溶液による加熱、 アンモニア水と30%過酸化水素水と脱イオン水 の混合溶液による加熱,塩酸と30%過酸化水素 水と脱イオン水の混合溶液による加熱を順に行 う. 次に, [図 2(f)] と同様の手順で preform 基 板とガラス基板を洗浄する.洗浄後,アジ化カ リウムの粉末をピンセットを用いて preform 基 板の分解室に封入し、ガラス基板とともにをボ ンディングチャンバー内にセッティングする 図 2(g)]. そして, 数日間真空引きを行う. 今回チャ ンバー内の圧力は 5.5 × 10⁻⁵ Pa であった. そ の後, チャンバー内にアルゴン, 窒素の混合気体 を 25 kPa 導入し, 基板を 300°C に加熱する.2 kVの電圧を基板全体に印加して, 陽極接合しセ ルを封止する [図 2(h)]. 最後に, 封止したセルの 分解室にフェムト秒レーザーを照射し、アジ化 カリウムの分解,カリウム蒸気の生成を行う [図 2(i)]. レーザーの波長は1030 nm, パルス幅260 fs, 繰り返し周波数 200 kHz, ビーム径 5 μm, 平 均パワーは 200 mW である.

3. セルの評価

複室型の MEMS 原子磁力計セルの評価を行 うために吸収スペクトル計測および磁場応答信 号の測定を行った.図3に吸収スペクトルの計 測結果を示す. 横軸が波長, 縦軸がパワーメー ターによって計測した光パワーである. 図 3a はセルを加熱しない状態での入射光特性である. 図 3b はセルを加熱しない状態での透過光特性 である.図 3a はセルへの入射光で、図 3b は図 3a に対応する常温時の透過光である. 図 3c は セルを132°Cに加熱した状態での入射光特性で ある.図 3d はセルを 132°C に加熱した状態で の透過光特性である.図 3cの入射光に図 3dの 高温時の透過光が対応している. 常温時と高温 時の入射光の条件はほぼ一致している.一方で、 透過光は常温時と高温時で異なった特性を示し, カリウムの D1 線である 770.11 nm 付近で高温 時の透過光が小さくなった.

図4の装置を用いて, 複室型の MEMS 原子磁 力計セルに交流磁場を印加し,楕円偏光レーザー を入射することによって磁場応答信号を測定し た. 測定結果からセルの最高磁場感度を推定し た. 実験条件はセルの温度が132°C,磁気シー ルドボックスと偏光ビームスプリッタの間にあ る $\lambda/2$ と $\lambda/4$ によって最適な楕円率に調整した 楕円偏光を入射した.また楕円偏光レーザーの 波長はカリウムの D1 線から適度に離調し、パ ワーは4mWであった. ヘルムホルツコイルに よって周波数 2.99 kHz, 信号強度 29.6 nTrms の 交流磁場を印加し実験を行った.図5にスペク トラムアナライザによって記録した磁場応答信 号を示す.図5の実験結果は図1や図4に示し たX軸方向の磁場印加に対する応答信号である. 図5の結果から推定したセルの最高磁場感度は 2 nTrms であった.

また, 複室型の MEMS セルのプローブ部と同 じ直径 3.4 mm の円形のキャビティをもつ MEMS セルを複室型と同様のプロセスで製作し, その 複室を持たないセルの磁場応答信号を測定した.

測定結果から複室型セルは複室を持たないセ ルと比較して、3分の1の楕円偏光レーザーパ ワーで最大感度を得ることができた.

4. 結論

アジ化カリウムにレーザーを照射すると,ア ジ化カリウムが付着しているガラス表面が曇る ことによって,原子磁力計のセルとして使用する 際にレーザー光を減光してしまうことが分かっ た.そこで本研究ではアジ化カリウムを封入す る部分と原子磁力計のセルとして機能する検出 部分を分ける複室型の MEMS 原子磁力計セル を提案してきた.フォトリソグラフィー技術に よってシリコンを複室型に加工し,陽極接合に よってアジ化カリウムを封入した小型の原子磁 力計セルを作成した.吸収スペクトルの計測結 果から,アジ化カリウムがフェムト秒レーザー

図 4 磁場応答信号測定に使用した光ポンピング原 子磁力計装置図. PBS: 偏光ビームスプリッタ, PD: フォトダイオード, DTA: 差動増幅器

図5 複室型の MEMS セルの磁場応答信号

によって分解され,カリウムが生成されたこと を確認した.磁場応答信号の測定結果からX軸 方向の最高磁場感度が2nTmsであった.複室 型セルは複室を持たないセルと比較して,3分の 1の楕円偏光レーザーパワーで最大感度を得る ことができた.

参考文献

- IK Kominis, TW Kornack, JC Allred, and MV Romalis. A subfemtotesla multichannel atomic magnetometer. *Nature*, Vol. 422, No. 6932, pp. 596–599, 2003.
- Li-Anne Liew, John Moreland, and Vladislav Gerginov. Wafer-level filling of microfabricated atomic vapor cells based on thin-film deposition and photolysis of cesium azide. *Applied Physics Letters*, Vol. 90, No. 11, pp. –, 2007.
- 3) T. Overstolz, J. Haesler, G. Bergonzi, A. Pezous, P.-A. Clerc, S. Ischer, J. Kaufmann, and M. Despont. Wafer scale fabrication of highly integrated rubidium vapor cells. In *Micro Electro Mechanical Systems (MEMS)*, 2014 IEEE 27th International Conference on, pp. 552– 555, Jan 2014.
- 4) 成田匡伸,大坊真洋. MEMS 技術による小型原子磁力計.第 75 回応用物理学会秋季学術講演会, 2014. 19p-A24-11.