計測自動制御学会東北支部 第 301 回研究集会 (2016.5.23) 資料番号 301-8

赤外光カメラを用いた映像脈波に関する研究

Image plethysmogram using infrared camera

○堀畑 友希*, 杉田 典大*, 吉澤誠**

Yuki Horihata*, Norihiro Sugita*, Makoto Yoshizawa**

*東北大学大学院工学研究科, **東北大学サイバーサイエンスセンター,

*Graduate School of Engineering, Tohoku University **Cyberscience Center, Tohoku University

キーワード: 生体信号検出 (biological signal detection),映像脈波 (plethysmogram wave), 脈波伝播時間 (pulse transit time),赤外光カメラ (infrared camera),放射照度 (Irradiance)

> **連絡先**: 〒 980-8579 仙台市青葉区荒巻字青葉 6-6-05, 東北大学大学院 工学研究科 吉澤・杉田研究室 堀畑 友希 Tel.: (022)795-7130, E-mail: yuki.horihata.t2@dc.tohoku.ac.jp

1. はじめに

現在,安価で非接触に生体情報を取得する手 法の1つとして,ビデオ映像を解析する手法が 挙げられる.この手法は,スマートフォンやWeb カメラといった身近なデバイスを使用するため, 手軽に測定できる手法として近年非常に注目さ れている.実際にPohらの研究¹⁾では安静状 態の被験者の顔面を撮影し,解析領域に対して 赤,緑,青信号それぞれの輝度平均値の時系列 を作成し,これらを用いて独立成分分析を行っ た.その中から心拍情報を最も多く含んでいる と考えられる信号に対して高速フーリエ変換を 行い,パワースペクトル密度(power spectral density: PSD)を計算することで,そのピーク 周波数から,呼吸数及び心拍数変動の推定を行っ ている.

なお,身体映像から得られる脈波信号は,し ばしば映像脈波とも呼ばれ,緑色光の帯域にお いて,血中ヘモグロビンが高い吸光特性を持つ ことを利用し,輝度信号値の変化から相対的な 血流量変化を測定することができる.しかし,通 常のカメラから得た映像は可視光のみを使用し ている為,生体内部への透過深度が浅く,表皮 に近い毛細血管における脈波情報しか検出する ことができなかった.一方,近赤外光は可視光 よりも生体内部への透過深度が深いため,細動 脈などの生体深部の血管を測定できると言われ ている²⁾.

細動脈は人間の自律神経と深く関わりのある 部位であり,細動脈の血流量変化が様々な生体 反応と関係していると考えられる³⁾.そこで本 研究では身体の近赤外映像を用いて細動脈など の皮膚の深部における脈波情報を捉えることを 目的とした.

2. 原理

光を生体に照射した時,生体内部への光の透 過深度を決定する要素として以下の2つが存在 する.1つ目は波長毎の光に対する皮膚の吸光 度である.皮膚の構造は層ごとに大きく異なり, 表皮ではメラニン,真皮ではコラーゲンが大部 分を占めている⁴⁾.また真皮内では毛細血管が 存在するので血中ヘモグロビン,ベータカロチ ン,ビリルゲンなど光を吸収する物質が多く存 在する.これらは物質毎に波長に対する吸光度 が異なり,この吸光度の違いが生体内部への透 過深度を決定する重要な要素になっている.

2つ目の要素は照射する光の強度,すなわち 放射照度である.媒質に対する入射光の強度と 透過深度の関係を表す Lambert-Beer の法則は 式(1)で表される.

$$\log(\frac{I_{out}}{I_{in}}) = \varepsilon_{\lambda} D \tag{1}$$

ここで、 I_{in} は媒質に入射する前の光の強度、 I_{out} は距離 Dの媒質を透過した後の光の強度、 ε_{λ} は 吸光係数と呼ばれる光源の波長によって定まる 定数である.この法則によれば、入射光の強度 が大きくなれば透過深度も大きくなることを表 している.また、波長の異なる光を用いて吸光 度が変化すると、透過深度も同様に変化することもこの式より確認できる.

これらの照射光の条件と透過深度の関係を利 用して,近赤外線カメラ並びに可視光カメラで 同時に撮影した2つ動画を解析することで,皮 膚の奥から表皮の向きに走行している細動脈の 特性の評価を行えるのではないかと考える.そ のためには,照射光の波長及び放射照度の違い で,深度の異なる血管の映像脈波を選択的に捉 えることが可能かどうかを確認する必要がある. 本報告では,基礎実験として,両カメラで同時 に撮影した映像から得た映像脈波の時間差の解 析を行った.

3. 実験

3.1 使用機器

実験環境を図1に示す.本研究では可視光カ メラとして CMOS カメラを用いた.フレーム レートはともに 120 fps に設定し,近赤外線カ メラのレンズのみに光学 IR フィルタを用いた. また顔面に照射する光源は 150 W のハロゲンラ ンプを用いた.

Fig. 1 撮影機器の配置と取得映像

3.2 方法

被験者には安静座位を保ってもらい,自由呼 吸下において顔領域のビデオ撮影を60秒間行っ た.本実験では,被験者の顔面に直接光を照射 しているので,安全の為,被験者はサングラス を装着した.被験者は男性1名(22歳)に2回撮 影を行った.1回目と2回目はそれぞれ波長760 nm,860 nm以上の光を透過する光学IRフィル タを,近赤外線カメラのレンズに装着して撮影 を行った.撮影開始直後,被験者が発光装置の スイッチを押し,その光が映像に記録された時 刻を映像の解析開始点とした.光の点灯後,放 射照度をを2.4 W/m²,4.1 W/m²,6.8 W/m² の3段階に変化させ,各段階それぞれ15 秒ず つ撮影を行った.以後これらの放射照度をそれ ぞれ Lv 1, Lv 2, Lv 3と呼ぶ.

3.3 解析方法

身体映像からの映像脈波の取得方法並びに,両 カメラで得られた映像脈波間の伝搬時間差 (PTlag)の解析方法を述べる.まず始めに撮影した 映像のフレームから関心領域(region of interest: ROI)を設定する.この際,図1のように 頬の一部を24 領域に分割し脈波情報を多く含 むところを選択した.次に各 ROI 内における 輝度平均値をフレーム毎に計算し,その時間変 化を確認する.本研究では,CMOS カメラで撮 影した動画においては緑色の信号輝度値を計算 した.

得られた信号には体動や呼吸性変動などが含 まれているため、これらを除去するためのフィ ルタ処理を行う必要がある.健常者の心拍数変 動の範囲は40~120 bpm と言われており周波数 に変換すると 0.7~2.0 Hz に相当する. ゆえに 本実験では、0.7~2.0 Hz の周波数帯を通過す る次数5のバタワースフィルタを使用すること で,心拍成分以外の信号成分を除去した.そし て,近赤外線カメラと CMOS カメラそれぞれで 得られた映像脈波の相関係数を求め、その相関 係数が最も高くなる時刻を PTlag とした. なお この時間差は CMOS カメラの映像脈波からみ た近赤外線カメラの映像脈波の時間の遅れを正 とした.また.心拍成分が検出されていること を確認するために、それぞれの映像脈波に対し て PSD 推定を行った. PSD 推定には Welch 法 (ハミング窓3秒,オーバーラップ幅2秒)を用 いた.

4. 結果

分割した 24 領域の中で相関係数の最大値を 比較したところ,頬部内側が最も相関が高かっ た.また PSD についても,頬部内側では高精度 に心拍成分を検出していた事が確認できたため, 以降,頬部内側を解析した結果について述べる.

4.1 IR フィルタ使用時の PTlag の解析

近赤外線カメラに波長 760 nm もしくは 860 nm の IR フィルタをかけた時の *PTlag* を求め た結果を,図2と図3にそれぞれ示す.図2,図 3より *PTlag* が Lv1, Lv 2, Lv 3の順に大き くなった事が読み取れる.また両図に示す全て の撮影条件で *PTlag* が正の値を取ることから, 近赤外線カメラの方が CMOS カメラよりも脈 波信号の位相が進んでいることが分かる.

Fig. 2 波長 760 nm 以上の光学フィルタを装 着した際の放射照度増加時における *PTlag* の 変化

Fig. 3 波長 860 nm 以上の光学フィルタを装 着した際の放射照度増加時における *PTlag* の 変化

5. 考察

5.1 ROI に関する考察

設定した 24 個の ROI の中で,頬部内側が最 も高精度に脈波を検出できていた.人間の頬部 には頬骨眼窩動脈,眼窩下動脈,頬動脈など様々 な血管が存在している⁵⁾.このため顎部や鼻部 よりも頬部内側の方が高精度に脈波を検知でき たと考えられる.

5.2 波長と放射照度に関する考察

実験結果より,近赤外線カメラで撮影した映 像から得た映像脈波と CMOS カメラから得た 映像脈波には時間差が存在し,近赤外線カメラ の方が CMOS カメラよりも脈波が到達するタ イミングが先行していた.また,放射照度が大 きくなるにつれて,2つの映像脈波の時間差で ある PTlag も大きくなる事が分かった.ゆえに, 可視光と近赤外光を用いて映像脈波を取得した 場合,近赤外光の方が可視光よりもより深部の 血管を測定していると考えられる.

6. おわりに

本報告では,生体へ照射する光の放射照度及 び波長と映像脈波が到達するタイミングの関係 性を検証する実験を行った.実験の結果から近 赤外光カメラの方が可視光カメラよりも生体深 部の血管を測定している事が確認できた.また, 放射照度が大きくなるにつれて,より深部の血 管を測定できるが,被験者の安全面や映像信号 の飽和を考えると限度があるため,最適な放射 照度を探す必要がある.また実験から得られた 映像脈波の SN 比が現段階ではまだ低いため,撮 影環境の改善及び精度の向上が求められる.今 後は撮影条件を改善しながら被験者数を増加し, 再現性を検証する必要があると考える.

参考文献

- Ming-Zher Poh, Daniel J. McDuff and Rosalind W. Picard: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. *Opt. Express* 18(10), pp. 10762-10774, 2010
- Anderson RR., Parrish JA.: The Optics of Human Skin. The Journal of Investigative Dermatology, 77(1), pp. 13-19, 1981
- 大谷修, 堀尾嘉幸: カラー図解人体の正常構造と機能 循環器. 日本医事新報社, 第1版, pp. 62-81, 2000
- Giltvedt J., Sira A.: Pulsed multifrequency photoplethysmograph. Medical & Biological Engineering & Computing, 22, pp. 212-216, 1984
- 5) Rauber-Kopsch 解剖学 http://www.anatomy.med.keio.ac.jp/funatoka/ anatomy/Rauber-Kopsch/1-47.html
- 6) 発光システム研究会 http://lumi-system.jp/column/037-20101205.html