計測自動制御学会東北支部 第 303 回研究集会(2016.7.15) 資料番号 303-8

落石検知システムに用いるピエゾ極限センサの基本特性試験 Basic Characteristic Test of Piezo-Electriclimit Sensor for Rockfall Detection System

○西村旭正*, 佐々木拓哉*, 中正和久*, 下井信浩*

○Akimasa Nishimura*, Takuya Sasaki*, Kazuhisa Nakasho*, Nobuhiro Shimoi* *秋田県立大学

*Akita Prefectural University

キーワード: 落石(Rockfall), ヘルスモニタリング(Health Monitoring), ピエゾセンサ(Piezoelectric Sensor)

連絡先:〒015-0055 秋田県由利本荘市土谷字海老ノロ 84-4

秋田県立大学大学院 システム科学技術研究科 機械知能システム学専攻

西村 旭正, Tel: (0184)27-2220, Fax: (0184)27-2188, Email: m18a022@akita-pu.ac.jp

1. 諸言

日本の国土の 70%以上が山地であり,その ほとんどが急斜面・急傾斜な地形である.この ような斜面には多くの岩塊が存在し,落石災害 をもたらす危険性がある.落石は,降雨,風, 地震など様々な自然による影響が重なって発 生するため予知・予測が難しい災害のひとつで ある.

落石は,斜面によって被害の大きさが変わる 災害である.岩塊が斜面の高い場所から落ちた 場合の危険度は極めて高く,斜面の下に存在す る家屋,交通,列車などに大きな影響を与える ³⁾.落石の危険度は,現場の技術者が実際に現 地調査を行い採点法に従って評価を行ってい る.しかし,この評価方法は目視を主体として おり,現場技術者による主観的な判断に依存す ることが多い.また,危険度の評価は経験によって個人差が生じる.さらに,現場の技術者の 数が不足しているため,調査が行き届かない場 所も多い¹⁾. このため,斜面に存在する岩塊 の評価を行う新たな手法の開発が望まれてい る.

これを受けて, 我々は落石注意箇所に低コス トの簡易計測センサ(以後, 極限センサと表記 する)を設置し, 常時監視可能な危険予知シス テムを構築する研究を行っている.本研究では 岩塊の下部に簡易計測センサを張り付けて, 不 安定な岩塊の状態を定量的に評価することの 実現可能性について, 実験を行った.本研究で 用いた極限センサは, ピエゾフィルムとガラス 板を用いて試作した.センサの基本特性の評価 には荷重試験機による繰り返し荷重試験を実 施した.

2. 従来の健全性評価手法

従来,転石,浮石の評価には風や波浪などの 自然現象や,機械などの人工的振動などによっ て引き起こされる常時微動を検出する手法が 用いられている.後述する2種類のセンサを用 いた手法では,異常箇所と正常箇所の振動差を 計測することによって危険度判定を行う.

2.1 光学式センサ

光学式センサは測定対象物にレーザ光を照 射し,物体の有無や動きの変化を検出する.計 測機器の一つとしてレーザドップラ速度計 (Laser Doppler Velocimeter)が挙げられる.レ ーザ光を振動する対象物に照射すると,物体か らの反射光はドップラー効果により波長が変 化する.レーザドップラ速度計はその波長の変 化を測定し,物体の速度を非接触で測定する機 器である.さらに測定結果を FFT 処理するこ とで構造物の固有振動数を算出することがで きる²⁾.

Fig.1 にレーザドップラ速度計の例として, グラフテック株式会社製レーザドップラ速度 計「U ドップラー」のシステム構成例を示す ⁴⁾.システム構成はセンサ部と収録部の2つに 大別されており,収録部には2台のセンサ部の 接続でき,同時に2箇所の振動測定が可能であ る.導入には1計測ユニット当たり600万円 程度かかる.

2.2 振動センサ

振動センサにより振動特性を計測して危険 度を測定する手法を Fig.2 に示す.本手法では, 岩塊と地盤部分に振動センサを設置し,それぞ れの振動を比較することで振動特性を得る.こ のようにして得られた岩塊部の振動測定記録 から,基盤部の振動測定記録を除することによ って,岩塊の振動特性スペクトルが求まる.こ の特性スペクトルから,振幅の大きさや揺れる

Fig.1 レーザドップラ速度計「Uドップラー」 の計測システム構成例²⁾

Fig.2 振動センサ構成³⁾

速度, 揺れの収まりやすさを算出し, 岩塊の危 険度を把握する³⁾.

3. 研究使用センサ

常時微動を計測する手法は電力供給が必要 であり,また計測装置が高価であることから, 長期的な監視には向いていない.本研究では安 価かつ電源供給が不要な圧電センサを使用し, 上述の手法の欠点を解消することを目指して いる.

3.1 ピエゾフィルム

本研究で使用した簡易計測センサには, 圧電 素子(ピエゾフィルム)を用いた. 圧電素子とは 圧電効果を生じる物質を指す. ある物質に振動 などの外力によりひずみを生じさせると,その 物質に電位差が生じる.また,その逆に電界中 に物質を置くとひずみが生じる.前者の現象を 圧電効果,後者を逆圧電効果という.圧電効果 を生じる圧電性物質には,水晶やロッシェル塩, 高分子圧電フィルム,圧電セラミックス等があ る.

圧電素子を利用することで、荷重やひずみを 電圧の変化として測定することが可能である. 実例としては、ヘッドフォン・スピーカー等の 音響機器、加速度センサやひずみゲージ等の各 種計測機器等、多数挙げられる.

3.2 ピエゾ極限センサ

極限センサの構造を Fig.3 に示す. 落石箇所 への設置を目的としていることから, ピエゾフ ィルムのリベット部分に負荷荷重が集中する ことを避けるため,上板を 10mm 切り取り, リベット部分にガラス板が重ならないように 設計した.本センサに力が加わるとガラス板が 変形し, ピエゾフィルムに電圧が生じる. この 出力電圧の大きさを測定することにより荷重 値を算出し落石の発生を予見する.

4. センサ特性試験

4.1 試験方法

センサ特性試験は, Fig4 のように試験機に 治具を設置して行った.荷重試験は金属片の裏 側にセンサをシリコン接着剤で張り付け,治具 に両端支持で固定し,点荷重を加えて実施した. 試験体として用いたセンサの個数は計5個で, 経年により少しずつ変化が起こることを想定 して試験機の速度を 6.0 [mm/min]とした.破 断荷重の測定では 100[N]から破断が起こるま で加える負荷荷重を 100[N]ずつ大きくしてい き,繰り返し荷重試験を行った.

センサ出力の測定には日置電機株式会社製

メモリロガー「LR8431」を用い,サンプリン グ周期を 10 [ms]として記録を行った.

4.2 試験治具

試験治具はジュラルミン材料 A2017 で作製 した.治具と下板の固定および試験片の固定に は六角穴付きボルト M6×15 を使用した.

Fig.3 極限センサ外観および寸法

Fig.4 試験状況

Fig.5 試験治具

5. 試験結果

5.1荷重と出力電圧の関係

荷重試験の結果を Fig.6 に示す.また, Fig.7 に各荷重値における出力電圧の平均値とばら つきを示す. Fig.6 は横軸に 100[N]から破断前 のピーク荷重までの値をとり,縦軸には各荷重 値における出力電圧をとる.試験結果から,極 限センサに加わる荷重が増加すると,出力電圧 も線形に増加していく傾向が読みとれる.

また, 試験体により全体的にばらつきが大き く発生し, 最大で±1.75[mV], 全体の平均とし て±1.32[mV]の誤差が生じていた.

5.2 破断点における荷重と出力の関係

それぞれの試験片における破断時の出力結 果と破断荷重を Fig.8 に示す. センサの過半数 は荷重 600[N]~700[N]で破断した. また, セ ンサ破断時の出力電圧は破断前に比べて 10 倍 ~300 倍の値となった.

6 考察

本研究では落石の危険予知を目的とした極限センサを試作し、センサ両端を支持した状態 で負荷試験を行うことによって、センサの基本 特性を調査した.本研究により、センサ破断時 にガラスが割れると同時に圧電素子から特徴 的な出力値が得られることが検証された.さら に、荷重の変化に対してセンサの出力電圧も線 形に変化することが検証された.

また,荷重と出力電圧の関係について線形近 似データとの比較を行ったが,平均 1.32[mV] の誤差が発生した.この原因としては,接着剤 の量が均一でなかったことや,出力電圧が 10[mV]以下と小さく,センサの個体差が大き く影響したためと考えられる.

今回の実験では,両端を固定した変位試験を

Fig.6 No.1 から No.5 荷重 - 出力電圧

Fig.7 荷重 - 出力電圧 (分散)

Fig.8 破断時の荷重 - センサ出力電圧

行ったが,実用化に向けて,さらに面方向の圧 縮と長手方向の引張りについて特性試験を行 う予定である.

参考文献

- 深田隆弘・森泰樹・澁谷 啓:「線路への影響評価に基づく落石リスクマップの作製手法」土木学会論文集 C(地圏工学), vol.68, No. 1, 199-212(2012)
- グラフテック株式会社ホームページ
 (2016年1月現在), http://www.graphtec.co.jp/site_instrume nt/laser/u-doppler/index.html>
- 3) 落石危険度振動調査 地質計測
 http://www.chishitsu-keisoku.co.jp/pdf/ra
 kuseki.pdf>