計測自動制御学会東北支部 第 313 回研究集会 (2017.12.9) 資料番号 313-4

A Consideration on Subdivision of Basic Step Angle in Full-Step Drive of a Stepping Motor

○松尾健史*,三浦武*,田島克文*,

○ Kenshi Matsuo*, Takeshi Miura*, Katsubumi Tajima*,

*秋田大学

*Akita University

キーワード: ステッピングモータ (stepping motor), フルステップ駆動 (full-step drive), マイクロステップ駆動 (micro-step drive), 低速域振動 (low frequency resonance), 振動特性 (resonance characteristics),

連絡先: 〒010-8502 秋田県秋田市手形学園町 1-1 秋田大学大学院 理工学研究科 松尾 健史, Tel.: (018)889-2332, Fax.: (018)837-0406, E-mail: matsuo@gipc.akita-u.ac.jp

1. はじめに

ステッピングモータは指令パルスにより,セン サを必要とせず開ループで回転角度や回転速度 を制御できるモータである.この簡易性から低 コストでシステムを構築できる.このため,FA 機器や OA 機器などに幅広く採用されている.

しかし,特定の入力パルス周波数において,急 に振動が大きくなる共振現象¹⁾が起こり,これ が低速域振動および位置決め時の整定時間の増 大の原因となる.この振動に対する一般的な抑 制法として,基本ステップ角の細分化するマイ クロステップ駆動がある.しかし,この駆動法 は電流値を微細に制御できる回路が必要であり, 駆動回路が高価になる問題がある.

そこで、2相ステッピングモータにおいて安価 なフルステップ駆動回路でも、励磁スイッチング シーケンスの調整を行うことで、基本ステップ 角を細分化できる方法が提案され,さらに,こ の方法により振動が抑制される駆動結果が示さ れている²⁾.しかし,これは1相励磁駆動に基づ いているため,正弦波の励磁電流により基本ス テップ角を細分化する従来法のマイクロステッ プ駆動で発生するトルクより小さくなる.そこ で,スイッチングシーケンスの調整で細分化す る方法を,2相励磁駆動で実現した方法³⁾が,近 年報告されている.この方法は,2相モータで 発生されうるトルクをすべて使い切ることがで きる.しかし,この方法はまだ振動性能を,ま だ十分に評価されていない.

そこで本研究では、振動特性を評価するため、 その2相励磁駆動のスイッチングシーケンス調 整法³⁾と1相励磁駆動の調整法²⁾(以降本研究 では、それぞれ2相励磁形調整法および1相励 磁形調整法と呼ぶ)で駆動した場合の速度振動

Fig. 1 ステッピングモータ駆動システムの概 略図. A sketch diagram of a stepping motor drive system.

特性を取得し,他の駆動法と比較する.具体的 には,従来法のフルステップ駆動である1相励 磁駆動,2相励磁駆動の場合,および,(正弦波 励磁電流で駆動した)従来法のマイクロステッ プ駆動おける速度振動特性をそれぞれ取得する. さらに,1相および2相励磁形調整法を元に,こ れらで発生されうるトルクと,それぞれ同じト ルクが発生するように励磁電流を与えた変形の マイクロステップ駆動(以降,1相励磁形マイ クロステップ駆動,2相励磁形マイクロステッ プ駆動⁴⁾と呼ぶ)で,速度振動特性を取る.最 後に,これらの振動特性をスイッチングシーケ ンスの調整法の特性と比較する.

2. 駆動システム

本研究で使用するステッピングモータ駆動シ ステムをFig.1に示す.ここで使用するステッピ ングモータは,バイファイラ巻の2相ハイブリッ ドステッピングモータ(オリエンタルモーター 社製 PK244-01B)であり,Table1にその仕様を 示す.励磁指令はコンピュータからDA変換器 を介して駆動回路へ伝送され,励磁電流がその 指令に従って回路からモータの各相に流れるこ とで駆動する.速度検出のため,使用するDCタ コジャネレータ(多摩川精機社製 TS680N1E3) は3V/1000 min⁻¹であり,この速度情報はAD 変換器を介してコンピュータで取得される.こ

Table 1使用するステッピングモータの仕様.Specification of the stepping motor.

······································	
Rated voltage	4.0 V
Rated current	1.2 A
Holding torque	0.26 N·m
Rotor intertia	$5.4 \times 10^{-6} \text{ N} \cdot \text{m} \cdot \text{s}^2/\text{rad}$
Step angle	1.8 deg
	Rated voltage Rated current Holding torque Rotor intertia Step angle

こで,タコジャネレータは速度検出するのみに 使われ,制御のフィードバックとしては使われ ない.すなわち,モータ駆動自体は開ループ制 御で行われている.本研究では,回転速度は1 sec あたりの指令パルス数で表現し,pps (pulses per second) と表す.例えば10 pps は1 sec あた り 10 pulses 分回転することを意味し,1パルス で 1.8 deg 回転するモータであることから,18 deg/sec を意味する.

3. 駆動方式

前半はフルステップ形駆動の紹介,後半はマ イクロステップ形駆動の紹介をする.また,説 明のため, Fig. 2 で示される 2 相ステッピング モータのトルクベクトル図¹⁾を適宜用いる.

3.1 フルステップ形駆動

基本ステップ角ずつ回転するフルステップ駆動である1相励磁駆動および2相励磁駆動について説明し,次に励磁スイッチングシーケンスの調整により,基本ステップ角を細分化する1 相励磁形調整法および2相励磁形調整法による駆動について説明する.

3.1.1 フルステップ駆動

基本ステップ角度ずつ回転する励磁方式とし ては、1相励磁方式と2相励磁方式があり、こ れによる駆動が1相励磁駆動および2相励磁駆 動である.

Fig. 2 トルクベクトル図. Torque vector diagram.

1 相励磁駆動は、例えば 時計回り方向に回転 させるためには、Fig. 2 で見ると、励磁シーケ ンスが A, B, Ā, \bar{B} , ... のように相を切り替えれ ばよい. また、2 相励磁駆動は、同様に AB, $B\bar{A}$, $\bar{A}\bar{B}$, $\bar{B}A$, ... のように切り替えて励磁をする. こ こで、AB は A および B 相の 2 相を同時に励磁 することを表す. いずれも電気角で $\pi/2$ ずつ回 転する.

このとき,モータで発生するトルクは以下の 通りになる.

$$T_{A}(i_{A},\theta) = -K_{T}i_{A}\sin(N_{r}\theta)$$

$$T_{B}(i_{B},\theta) = K_{T}i_{B}\cos(N_{r}\theta)$$

$$T_{\bar{A}}(i_{\bar{A}},\theta) = K_{T}i_{\bar{A}}\sin(N_{r}\theta)$$

$$T_{\bar{B}}(i_{\bar{B}},\theta) = -K_{T}i_{\bar{B}}\cos(N_{r}\theta)$$
(1)

ここで、 θ は回転子角度、 i_A , i_B , $i_{\bar{A}}$, $i_{\bar{B}}$ はA相, B相, \bar{A} 相, \bar{B} 相それぞれの励磁電流, K_T はトルク 定数、 N_r は回転子の歯数を表し、 T_X 標記は X相で励磁した場合に発生するトルクを意味する ことにする.また、2 相励磁方式で発生するト ルクは、例えばA相と B相を同時に励磁すると、 Fig. 2 の AB に停止し、トルクは $T_{AB} = T_A + T_B$ となるため、 $i_A = i_B = I_m$ のように定格電流 I_m を流すと、以下のようになる.

$$T_{AB}(I_m,\theta) = \sqrt{2}K_T I_m \cos(N_r \theta + \frac{\pi}{4}) \quad (2)$$

ここで,*T_{XY}*標記は*X*相と*Y*相が同時に励磁された場合に発生するトルクを表す.同様にして

Fig. 3 1相励磁駆動におけるスイッチングシー ケンス. Switching Sequence of 1-phase excitation drive²⁾.

BĀ, *ĀB*, *BA* の 2 相励磁においても求められる. このように,各相の励磁電流を定格値にした場 合,2 相励磁方式は1 相励磁方式に比べ,高ト ルクを発生できる.この関係は Fig. 2 からも分 かる.

3.1.2 スイッチングシーケンスの調整法

特定の入力パルス周波数により,共振が発生 する場合,低速域振動の原因となる.その対策 として,一般に基本ステップ角を細分化するマ イクロステップ駆動を用いるが,微細な電流制 御可能な回路が必要になる.そこで三浦らは,微 細な制御回路を必要としないフルステップ駆動 回路においても基本ステップ角度を細分化する ため,励磁指令のタイミングを調整するスイッ チングシーケンスの調整法²⁾(1相励磁形調整 法)を提案した.以下,この手法について説明 する.A相からB相へ移動する場合,Fig.3のよ うに,機械的時定数より充分小さい時間 τ にお いて,時間 τ_A の間はA相が励磁され,時間 τ_B の間はB相が励磁されるものとする.そうする ことで,平均のトルク T_{ave} は次のように表せる.

$$T_{ave}(\theta) = \frac{\tau_A}{\tau} T_A(i_A, \theta) + \frac{\tau_B}{\tau} T_B(i_B, \theta)$$

$$\tau_{\Xi} \tau_{\Xi}^{\Xi} \cup, \quad \tau = \tau_A + \tau_B$$
(3)

ここで, τ_A の間は $i_A = I_m$, $i_B = 0$ であり, τ_B の 間は $i_A = 0$, $i_B = I_m$ である. $T_{ave}(\theta_e) = 0$ となる トルク平衡点 θ_e は, $A \ge B$ の間の任意の位置と なる. よって, 式(3)より整理すると, 次の式 が成り立つ.

$$\tau_A = \frac{\tau}{1 + \tan(N_r \theta_e)}, \quad \tau_B = \frac{\tau \tan(N_r \theta_e)}{1 + \tan(N_r \theta_e)} \quad (4)$$

この励磁スイッチング調整法の場合, Fig. 2 の トルクベクトル図において, トルクは一番内側 の四角形 *ABĀB* となる.

次に、2相励磁のスイッチングシーケンス調 整法³⁾ (2相励磁形調整法)を考える.これは 前述の1相励磁形調整法と同様であるが、Fig. 2 において、1相励磁のAからBへ移動の代わり に、2相励磁してABからBĀへ移動する場合、 時間 τ_{AB} の間はA相とB相を2相励磁、時間 $\tau_{B\bar{A}}$ の間はB相とĀ相を2相励磁するものとする. 具体的には、以下の時間それぞれ励磁する.

$$\tau_{AB} = \frac{\tau}{1 + \tan(N_r \theta_e)}, \quad \tau_{B\bar{A}} = \frac{\tau \tan(N_r \theta_e)}{1 + \tan(N_r \theta_e)} \quad (5)$$

ここで, τ_{AB} 間は $i_A = i_B = I_m$, $i_{\bar{A}} = 0$ であり, $\tau_{B\bar{A}}$ 間は $i_A = 0$, $i_B = i_{\bar{A}} = I_m$ である. 例えば $B\bar{A}$ 相から $\bar{A}\bar{B}$ 相への移動のような他の相間移動に おいても,同様に励磁を行う. 発生トルクは Fig. 2 の一番外側の四角形 $AB \rightarrow B\bar{A} \rightarrow \bar{A}\bar{B} \rightarrow \bar{B}A$ の軌跡を描く. トルクベクトル図から明らかの ように,1相励磁形調整法に比べ,最大トルク の比較で $\sqrt{2}$ 倍になる.

3.2 マイクロステップ形駆動

本節では,前節のスイッチングシーケンスの 調整法における振動特性と,マイクロステップ 駆動時の特性を比較するため,従来法とおよび1 相および2相励磁形調整法による駆動で発生す るトルクと,それぞれ同等のトルクを発生する ように,励磁電流を調整したマイクロステップ 駆動(1相励磁形マイクロステップ駆動,2相励 磁形マイクロステップ駆動)について説明する.

3.2.1 従来法のマイクロステップ駆動

はじめに従来法のマイクロステップ駆動を紹 介する.この駆動は,例えばA相からB相へ移 動する場合, 励磁電流を正弦波で与えたとき, す なわち,

$$i_A = I_m \cos(N_r \theta_e), \quad i_B = I_m \sin(N_r \theta_e)$$
 (6)

と与えたとき,これらを式(1)に代入し,合成 トルクを計算すると,次のようになる.

$$T = T_A + T_B = -K_T I_m \sin\{N_r(\theta - \theta_e)\}$$
(7)

この式よりトルクは, Fig. 2において分かるよう に,1相励磁時の最大トルクと同じくなり, $A \rightarrow B \rightarrow \bar{A} \rightarrow \bar{B}$ ののように円軌跡を描く.このた め,トルクリップルを生じない利点がある.

3.2.2 変形のマイクロステップ駆動

前節で述べたスイッチングシーケンスの調整 法は,従来法のマイクロステップと同じトルク 発生しない.そこで,速度振動特性を比較するた め,次のような変形のマイクロステップ駆動を 考える.まず1相励磁形調整法と同じトルクに なるように,次のような電流値を与え駆動する.

$$i_A = \frac{I_m}{1 + \tan(N_r \theta_e)}, \quad i_B = \frac{I_m \tan(N_r \theta_e)}{1 + \tan(N_r \theta_e)}$$
(8)

これは, $i_A + i_B = I_m$ となる.これを1相励磁形 マイクロステップ駆動とする.

同様に2相励磁形調整法においては,三浦ら の高トルク形マイクロステップ駆動⁴⁾を用いる. この文献では,A相からB相へ移動する場合の 励磁法を提案しているが,本研究ではAB相か らBĀ相へ移動する場合のような2相励磁形に 変更する.具体的には,次のように電流値を与 えて駆動すればよい.Fig.2において,ABとB の間では,

$$i_A = \frac{I_m \{1 - \tan(N_r \theta_e)\}}{1 + \tan(N_r \theta_e)}, \quad i_B = I_m$$
(9)

とし, Bと BĀ の間では,

$$i_B = I_m, \quad i_{\bar{A}} = -\frac{I_m \{1 - \tan(N_r \theta_e)\}}{1 + \tan(N_r \theta_e)}$$
 (10)

のように励磁する.本研究では,これを2相励 磁形マイクロステップ駆動と呼ぶことにする. 以上のように電流値を与えると、1 相および 2 相励磁形調整法と、それぞれ同じトルクが発 生する駆動が可能になる.

4. 速度振動特性の実験

ステッピングモータを前章で説明した各駆動 方式で定速駆動した場合,その速度の振動成分 を計測する.これを低速から中低速域領域でそ れぞれ計測した場合,その速度振動特性を取得 し,各々を比較する.

4.1 実験方法

実験条件は、速度として入力パルスの周波数 を 10 pps から 5 pps 毎で 800 pps まで、無負荷 で駆動した場合、各速度の振動成分を測定する. ここでは、速度検出器である DC タコジャネレー タで発電される電圧値の peak to peak 値が、そ の速度振動成分 V_{p-p} となる.

このとき,前章は説明した次の方式で,それ ぞれ駆動する.

- a) スイッチングシーケンスの調整法の駆動
 (1 相励磁形調整法²⁾, 2 相励磁形調整法
 3))
- b) フルステップ駆動(1相励磁駆動,2相励 磁駆動)
- c) 変形のマイクロステップ駆動(1相励磁形 マイクロステップ駆動,2相励磁形マイク ロステップ駆動⁴⁾)
- d) 従来法のマイクロステップ駆動

なお, 方式 a), b) はフルステップ形駆動, 方式 c), d) はマイクロステップ形駆動である.また, 方式 a) の調整法の駆動において, τを機械的お よび電気的時定数の中間である 0.8 ms に設定す る²).

4.2 結果

4.2.1 1相励磁形駆動の場合

得られた速度振動特性を,1相励磁形の駆動 はFig.4に,2相励磁形の駆動はFig.5に,それ ぞれまとめて示す.比較のため,双方に方式 d) の従来法のマイクロステップ駆動で得られた振 動特性も示す.Fig.4で示されるように1相励 磁形駆動の場合は,方式 a), b), c)ともに175 pps 付近で共振が見られる.方式 b)のフルステップ 駆動では脱調が起こり,指令通りの駆動ができ ない.一方,方式 a)の調整法を用いた場合は脱 調が起こらず 400 pps 以下の速度域では方式 b) より振動が抑えられている.それ以上の速度域 では,そもそも振動が少ない領域であることか ら,どちらも大きな差は見られない.この結果 は,三浦らの文献²⁾と同様の結果である.

さて, 方式 c) の1 相励磁形マイクロステップ 駆動を行なった場合, フルステップ形駆動の方 式 a) および b) に比べて, 計測したすべての速 度域で振動成分が小さくなった. 微細な電流制 御を行えることが大きな利点となり, 結果とし て振動が抑制されたと考えられる.

この方式 c) は, マイクロステップ形駆動同士 を比較しても, 従来法の方式 d) より, 振動が最 大になる周波数付近を中心に概ねの速度域で振 動成分は小さくなる. これは, 発生トルクが小さ いため, 振動も小さくなったものと考えらえる.

方式 a) の調整法による振動特性の考察に戻れ ば、従来のフルステップ駆動である方式 b) の 1 相励磁駆動と、方式 c) の 1 相励磁形マイクロス テップ駆動の丁度中間の性能を有することが分 かる.

4.2.2 2 相励磁形駆動の場合

2 相励磁形駆動の場合は, Fig. 5 で示される ように, 従来のフルステップ駆動である方式 b) の2 相励磁駆動では, 200 pps 付近の共振点で1 相励磁駆動と同様に脱調を起こすが, 方式 a)の

Fig. 4 1相励磁形駆動における速度振動特性. Speed-resonance chracteristics in drives based on 1-phase excitation.

Fig. 5 2相励磁形駆動における速度振動特性. Speed-resonance chracteristics in drives based on 2-phase excitation.

2相励磁形調整法および方式 c) の 2 相励磁形マ イクロステップ駆動では,脱調を起こさず振動 が抑制されている.

また,2相励磁形駆動は,2相ステッピング モータが発生されうるすべてのトルクが引き出 されるため,1相励磁形駆動に比べ,高トルク になる.このため,振動成分が1相励磁に比べ 大きくなる.Fig.4および5で示されるように, 方式 a)の1相および2相励磁形調整法を比較す ると,最大振動周波数付近は特に,2相励磁形 の方が大きい振動になっていることが分かる.

方式 c) の 2 相励磁形マイクロステップ駆動時 は、方式 a) の 2 相励磁形調整法による駆動より、 微細な電流制御を行うため、さらに振動が小さ くなるが、従来のマイクロステップ駆動よりは 振動が大きくなる.これも前述通り発生トルク が大きいためであり,方式 d)の従来法のマイク ロステップ駆動より最大で √2 倍のトルクとな るためである.

次に特徴的な部分として挙げられるのは,2 相励磁形駆動では400 pps 付近で共振点がある. これは1相励磁形駆動では現れなかった部分で あるが,方式 a), b), c)の2相励磁形駆動すべて で現れている.しかし,1相励磁形駆動場合や, 最大共振点付近の場合と異なり,方式 a)の調整 法の振動より,方式 c)の変形のマイクロステッ プ駆動で発生する振動が大きくなり,これまで の場合と異なることが分かる.なお,2相励磁 形マイクロステップ駆動の特性は,三浦らの文 献⁴⁾で示されている振動特性と同様の特性を示 している.

調整法による駆動の振動特性に戻ると,1相励 磁形駆動時と同様に,方式b)の2相励磁駆動と c)の変形のマイクロステップ駆動との中間の振 動性能を有している.ただし,前述の通り,400 pps 付近では2相励磁形駆動の中では最も振動 特性が良い.しかし,750 pps 付近では,他の駆 動では現れなかった共振が現れている.

5. おわりに

本研究は、1相および2相励磁方式に基づい てスイッチングシーケンスの調整法により、フ ルステップ駆動でも、マイクロステップ駆動の ような基本ステップ角度を細分化できる手法で 駆動した場合の速度振動特性を取得し、従来の フルステップ駆動および同じトルクを発生する 変形のマイクロステップ駆動とで、振動特性の 比較を行った.結果として、フルステップ駆動 と変形のマイクロステップ駆動との中間の性能 を有していることが分かったが、2相励磁形調 整法の場合は、最大振動になる共振点以外の共 振点付近で例外が見られた.また、2相励磁形 調整法は1相励磁形調整法より、高トルクのた め振動が大きくなることも分かった.今後の課 題として,共振のメカニズムの解明と抑制方法 を検討していきたい.

参考文献

- 百目鬼 英雄: ステッピングモータの使い方,工 業調査会 (1993)
- 2) 三浦 武,谷口 敏幸: ステッピングモータのフル ステップ駆動における固有振動の抑制,電気学 会論文誌 D, 124-5, 519/520 (2004)
- 3)金柯:2形前置補償要素を用いたステッピング モータの回転子振動抑制に関する研究,秋田大 学修士学位論文 (2016)
- 4) 三浦 武,谷口 敏幸: 2相ステッピングモータの 高トルク形マイクロステップ駆動,電気学会論 文誌 D, 121-12, 1297/1298 (2001)