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1. Introduction

The broadband wireless communication chan-

nel is characterized as a frequency selective

fading channel1)．It means that the signal is

reflected by the buildings between the trans-

mitter and the receiver, and it is received un-

der the influence of multi-path fading with dif-

ferent delays. Therefore, Inter-symbol interfer-

ence (ISI) occurs due to the frequency selective

fading. In order to solve this problem, accurate

channel state information (CSI) is required. A

promising approach to obtain accurate CSI is

an adaptive channel estimation (ACE) using

square error criterion (SEC) based the stan-

dard least mean square error (LMS) or the

least mean forth error (LMF) algorithm, whose

general structure is shown in Fig. 12).

Recently, a number of channel measurements

have verified that broadband wireless channels

often exhibit sparse structure as Fig. 2 3)．For

an example, consider the signal whose band-

width is 7.56MHz at a carrier frequency of 770

MHz. There are only 6 non-zero taps in the

channel model. Hence, in this sparse chan-

nel, a few taps have non-zero coefficients and

most of them have zeroes. To improve the esti-

mation performance, the zero-attracting LMS

(ZA-LMS) and zero-attracting LMF (ZA-LMF)

algorithms using ℓ1-norm penalized constraint

function have been proposed in paper5). The

ZA-LMF algorithm has a smaller steady-state

error for applications. However, its conver-

gence properties are very slower than the ZA-

LMS algorithm. In practice, higher order power

filters can quickly become unstable unless an

extremely small step size is employed6). To

take advantage of the zero attraction and to

improve the drawbacks of the LMS and LMF

algorithms, Li 4) has proposed the zero-attracting

least-mean mixture-norm (ZA-LMMN) algorithm．

The ZA-LMMN algorithm uses the square er-

ror criterion and the forth error criterion to in-
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Fig. 1　 The structure of channel estimation

method based on adaptive filter algorithm.
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Fig. 2　An example for sparse channel.

tegrate the ZA-LMS and ZA-LMF algorithms.

However, the parameter which takes balance

between the square error criterion and the forth

error criterion is fixed. In this paper, we pro-

pose an improved ZA-LMMN algorithm using

an adaptive parameter to take balance between

the square error criterion and the forth error

criterion.

The remainder of this paper is organized as

follows. In Section 2, the ZA-LMMN algo-

rithm is described. In Section 3, the improved

ZA-LMMN is introduced. In Section 4, nu-

merical simulations are presented to show the

effectiveness of the proposed algorithm. The

conclusions are given in Section 6.

2. The ZA-LMMN algorithm

2.1 The traditional LMMN algorithm

The traditional LMMN algorithm based on

the framework of a channel estimation system

is briefly revisited. Consider a broadband multi-

path wireless communication channel whose fi-

nite impulse response (FIR) channel vector is

defined as h = [h0, h1, ..., hN−1]
T , where N is

the number of channel coefficients. It is sup-

ported by only K (K ≪ N) dominated chan-

nel coefficients which are not zeros. The input

training signal x(t) = [x(t), x(t − 1), ..., x(t −
N − 1)]T is used to probe the unknown sparse

channel h at the time t. At the receiver side,

observed signal y(t) is given by

y(t) = hTx(t) + z(t), (1)

where z(t) is additive white Gaussian noise

(AWGN) variable satisfying CN (0, σ2), which

is assumed to be mutually independent with

the input training signal x(t). The task of the

channel estimation based on the LMMN algo-

rithm is to obtain h by minimizing the instan-

taneous error between the received signal y(t)

and the channel estimation output ỹ(t) which

is given by ỹ(t) = h̃Tx(t). h̃ denotes the es-

timated channel vector. The cost function of

the LMMN algorithm is given as

J(t) =
δ2
2
J2(t) +

δ4
4
J4(t), (2)

where J2(t)
∆
= E{e2(t)}, J4(t)

∆
= E{e4(t)},

E{·} is the mathematical expectation opera-

tor, δ2 ∈ [0, 1] and δ4 = 1 − δ2. Therefore, δ2

and δ4 is to give a balance of the combination

between J2(t) and J4(t). The gradient of J(t)

with respect to h̃ can be written as follows

∇J(t) =
∂J(t)

∂h̃(t)

= −E
{
e(t)

[
δ2 + δ4e

2(t)
]
x(t)

}
.

(3)
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Using the gradient of J(t) with respect to h̃,

the updating equation of the traditional LMMN

algorithm can be written as

h̃(t+ 1) = h̃(t) + µ∇J(t)

= h̃(t) + µe(t)
[
δ2 + δ4e

2(t)
]
x(t),

(4)

where µ is a step size to control the conver-

gence of the traditional LMMN algorithm. When

δ2 = 1, Eq. 4 reverts to the error norm for the

LMS algorithm, whereas when δ2 = 1, Eq. 4

reverts to the error norm for the LMF algo-

rithm.

2.2 The ZA-LMMN algorithm

The traditional LMMN algorithm does not

make use of the channel sparsity because J(t)

adopts neither sparse constraint nor penalty

function. A modified cost function is proposed

in paper 7) to give rise to the ZA-LMMN al-

gorithm. The modified cost function which is

given as follows is termed as the ZA-LMMN

algorithm.

JZA(t) =
δ2
2
J2(t) +

δ4
4
J4(t)︸ ︷︷ ︸

J

+ λ
∥∥∥h̃(t)∥∥∥

1︸ ︷︷ ︸
Sparse constraint

,

(5)

where
∥∥∥h̃(t)∥∥∥

1
is the ℓ1-norm of h̃(t), and λ

is regularization parameter to balance the up-

date error term J and sparsity of the channel

estimator
∥∥∥h̃(t)∥∥∥

1
. Thus, the updating equa-

tion of the ZA-LMMN algorithm can be writ-

ten as

h̃(t+ 1) =

h̃(t) + µe(t)
[
δ2 + δ4e

2(t)
]
x(t)︸ ︷︷ ︸

Traditional LMMN

− ρ · sgn
(
h̃(t)

)
︸ ︷︷ ︸
Sparse constraint︸ ︷︷ ︸

ZA−LMMN

,

(6)

where ρ = µ × λ is the sparse factor, and sgn

is a sign function which is given by

sgn (x) =


1, if x > 0;

−1, if x < 0;

0, if x = 0.

(7)

Compared with the traditional LMMN algo-

rithm, the ZA-LMMN algorithm provides an

additional term (sparse constraint) which at-

tracts the channel coefficients to zeros. It speeds

up the convergence for the ZA-LMMN algo-

rithm to estimate a sparse multi-path channel.

When δ2 = 1, Eq. 6 reverts to ZA-LMS al-

gorithm, while when δ2 = 0, Eq. 6 reverts to

ZA-LMF algorithm.

3. The improved ZA-LMMN al-

gorithm

The misadjustment of the LMMN algorithm

is given by 8):

M =
µN

2σ2
w

× δ2σ2
w + 2δ (1− δ) ξ4w + (1− δ) ξ6w

δ + 3 (1− δ)σ2
w

E
{
x2 (t)

}
(8)

where σ2
w = E

{
z(t)2

}
, δ = δ2 = 1 − δ4, ξw

denotes the expectation of the effective mea-

surement noise. The step-size which controls

the convergence speed which is given by 2):

0 < µ <
1

NE {x2(t)}

(
δ + (1− δ)

1

6E {z2(t)}

)
(9)

In Eq. 6, the parameters δ is a fixed value. The

paper 8) shows that M whose δ = 0 (LMF)

is much lower than M whose δ = 1 (LMS),

which means that the LMF algorithm has a

lower misadjustment than the LMS algorithm.

However, µ with δ = 0 (LMF) is much smaller

than µ with δ = 1 (LMS), which means that

the LMF algorithm has a slower convergence

speed than the LMS algorithm.
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Fig. 3　 The function curves of δ(t) with dif-

ferent parameter a.

In this paper, we propose a variable δ(t) to

adjust the convergence speed and the misad-

justment adaptively. The cost function of the

improved ZA-LMMN algorithm is given by

J(t) =
δ(t)

2
J2(t) +

1− δ(t)

4
J4(t) + λ

∥∥∥h̃(t)∥∥∥
1
,

(10)

The updating equation of the improved ZA-

LMMN algorithm can be written as

h̃(t+ 1) = h̃(t)

+ µe(t)
[
δ(t) + (1− δ(t))e2(t)

]
x(t)

− ρ · sgn
(
h̃(t)

)
(11)

where δ(t) is a variable parameter decided by

the residual e(t), which is shown as

δ(t) = 1− exp (−a |e(t)|) (12)

Fig. 3 shows the function curves of δ(t) with

different parameter a. The function of δ(t) is

a symmetric function with return values from

0 to 1. Larger |e(t)| returns closer to 1, while

|e(t)| → 0 results in δ(t) → 0. The parameter

a > 0 is used to control the slope. When a

is larger, the return value around |e(t)| = 0

changes faster, and the number of return values

close to 1 increases.

Therefore, a large δ(t) is chosen due to the

large residual e(t) at the beginning of the ZA-

LMMN algorithm. The large δ(t) makes the

ZA-LMMN algorithm more biased towards the

ZA-LMS algorithm, which can achieve a fast

convergence speed. When the ZA-LMMN al-

gorithm is close to convergence, a small δ(t)

is chosen due to the small residual e(t). The

small δ(t) makes the ZA-LMMN algorithm more

biased towards the ZA-LMF algorithm, which

can achieve a smaller steady-state error.

4. Simulations

The performance of our proposed improved

ZA-LMMN algorithm is compared with other

sparse adaptive filtering algorithms (ZA-LMS,

ZA-LMF and ZA-LMMN). In the experiments,

each point for all of the used adaptive filtering

algorithms is set to 1000 Monte Carlo runs. In

this paper, we use a multi-path channel with

N = 20 taps to evaluate the channel estima-

tion behavior of each algorithm. The number

of dominant channel coefficients is marked by

K. The parameter is given in Table.1. In

all of the simulations, the values of the domi-

nant channel coefficients are created under a

standard normal distribution, and the posi-

tions of theK taps are chosen randomly within

the length of the designated sparse channel,

which is subjected to ∥h∥22 = 0.1. The random

Bernoulli signal is used as the training signal

x(t), and the white Gaussian noise signal z(t)

is independent to x(t). The noise amplitude is

set as 0.01. The mean square error (MSE) is

defined as

MSE = 10× log
∥∥∥h− h̃

∥∥∥
2

(13)

is used to evaluate the steady-state performance

of each algorithms.
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In the first simulation, we set K = 2, the

other parameters and the results are shown

in Table. 1. The ZA-LMS algorithm can be

considered as the ZA-LMMN algorithm with

δ = 1, while The ZA-LMF algorithm can be

considered as the ZA-LMMN algorithm with

δ = 0. In the ZA-LMMN algorithm, we choose

a fixed δ = 0.5 to take a balance between LMS

and LMF. In the proposed algorithm, we set

a = 10. It can be found that the MSE of

the ZA-LMF algorithm is smaller than the ZA-

LMS algorithm after 5000 iterations, and the

MSE of the ZA-LMS is smaller than 20dB af-

ter 168 iterations while the MSE of the ZA-

LMF is smaller than 20dB after 1094 itera-

tions. When δ = 0.5, the ZA-LMMN algo-

rithm has a smaller MSE after 5000 iterations

and less iterations when MSE< 20dB than the

ZA-LMS and ZA-LMF algorithms. Our pro-

posed algorithm has a smallest MSE and least

iterations than ZA-LMMN algorithm. The con-

vergence curves of all algorithms are shown

in Fig. 4. On the one hand, the ZA-LMS,

ZA-LMMN algorithms and our proposed algo-

rithm achieve convergence fast, while the final

MSEs of the ZA-LMS and ZA-LMMN algo-

rithms are larger than the ZA-LMF algorithm

and our proposed algorithm. On the other

hand, the convergence of the ZA-LMF algo-

rithm is much slower than other algorithms.

The ZA-LMMN algorithm combine the advan-

tages of the ZA-LMS and ZA-LMF algorithms.

Our proposed algorithm uses a variable δ(t) to

makes better use of their advantages than the

ZA-LMMN algorithm.

The function curve of each δ(t) in the adap-

tive filtering algorithms are shown in Fig. 5.

The parameters δ(t) of the ZA-LMS, ZA-LMF

and ZA-LMMN algorithms are fixed at 1, 0
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Fig. 4　 The convergence curves.
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Table 1　 The parameters

Algorithm δ in LMMN ρ µ MSE(after 5000 iterations) Iteration (MSE< 20dB)

ZA-LMS 1 5× 10−3 0.02 -21.4549dB 168

ZA-LMF 0 1× 10−6 1.8 -23.5688dB 1094

ZA-LMMN 0.5 1× 10−5 0.05 -22.4634dB 119

Proposed δ(t) 1× 10−5 0.08 -24.0671dB 115

and 0.5, respectively. The parameters δ(t) of

our proposed algorithm is variable based on

the residual e(t). At the beginning, the pa-

rameters δ(t) of our proposed algorithm is close

to 1, which biased towards the ZA-LMS algo-

rithm. It provides a fast convergence speed.

When our proposed algorithm approaches con-

vergence, the small δ(t) which is close to 0,

provides a small MSE like the ZA-LMF algo-

rithm.

5. Conclusion

We have proposed an improved ZA-LMMN

algorithm for multi-path channel estimation.

Instead of a fixed δ in the ZA-LMMN algo-

rithm, a variable δ(t) is used in our proposed

algorithm. Using the variable δ(t), our pro-

posed algorithm can achieve a fast convergence

speed like the ZA-LMS algorithm at the be-

ginning, while can achieve a small MSE like

ZA-LMF algorithm at last. The simulation re-

sults verify the effectiveness of our proposed

algorithm.
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