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1. Introduction neutron detectors have definite advantages. Detec-

tors positioned within the core, have proved their

It is a common engineering knowledge that al-

capability for detecting neutron flux fluctuations

terations in vibration patterns of mechanical struc-

and form part of the standard plant instrumenta-

tures are a good indicator of incipient structural

failures.

tion for performing local power monitoring. The in-

This recognition has led to the setting

crease of safety and availability in a nuclear power

up of vibration monitoring systems at equipment

plant can be expected by the construction of addi-

such as power plants, turbines, engines, etc., wher-

tional instrumentation or safety systems. On the

ever component breakdown would entail consider-

contrary, is better to gain more information by the

able damage and expense. The ubiquity of vibra-

existing systems, evaluating the existing data in a

tions in engineering equipment extends also to nu-

manner which can be clearly understood.

clear power plants. Evidence of neutron flux fluc-

Vibration per se is not necessarily bad if its

tuations caused by mechanical vibrations of control

rods, were found in PWR, BWR and PHWR.

amplitude and the associated forces are within ac-

ceptable limits. Changes in the vibration induced

Monitoring these vibrations via existing in-core

neutron patterns could be an indicator of incipient
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structural failures.

The measured quantity is the neutron noise,
whereas the cause is called the noise source. There
is a relationship between the noise source {cause)
and the induced noise (effect). This relationship is
determined by the physics of the process and can
be described by a suitable theory. This is what we
called direct task.

In diagnostics the process starts from the ob-
servation of some cause. The problem consists in
inferring the noise source (cause) from the induced
noise {effect), which is an inverse task.

Concerning the neutron noise diagnostics pro-
cedure of mechanical vibration sources, it consists
of two steps as follows:

A direct task: Calculation of the neutron noise

as a function of the vibrations parameters.

An inverse task: Expression of the driving source

from the solution for the neutron noise. In other
words, instead of solving an equation, it has to be

reconstructed.

2. Methodology
2.1 Vibration Monitoring

We shall use the same noise source and trans-
fer model described in [1] — [3]. It is assumed that
the axial dependence of the rod motion as well as
that of the neutron noise can be factorized. So, the
description is two-dimensional throughout. One-
group diffusion theory will be used with one group
of delayed neutrons. The static control rod is de-
scribed by Feinberg-Galanin theory with its con-
tribution to the absorption cross section as a two-

dimensional point:

£rod = v 2 8(r — 1) (1)

Where 7, is the rod equilibrium position and 7 is
the Galanin’s constant.

When vibrating, the rod will be moving on a
two-dimensional trajectory around the equilibrium
position Tp.

The perturbation represented by the vibrations is

given as:
6Tlr t) = v« [6(r — rp—€(t)) = 6(r =) (2)

This equation shows how the unknown vibration
parameters rp,€;(t) and €,(¢) are contained in the
noise source medel. €; and ¢, are the vibrations
compouents in the frequency domain.

Using the weak absorber approximation, the
neutron noise induced by the vibrating rod can be

written as follows:

6¢(1", f-b') = % * f(w) * vrp[G(Tarmw) * éo(rp)] (3)

Notating the spatial derivatives with respect of
7, and yp, of the Green’s function (transfer func-
tion) as G; and G, equation (3) results in an ex-

pression of the form:

dp(r,w) = % * (€4 (7, w)Go(r, rp,w) +

+ey{r,w)Gy(r, rp,w)] (4)

In the above, the transfer function G{r,r’,w) is

defined as the solution of the following expression:
AG(r,r' w) + B} W)G(r, 7', w) = 8(r,r)  (5)
Where B? is given as:

1
B =B%#%[1 - ———— 6
@=Bsl- sl
with B, being the static buckling and Gy(w) the
zero reactor transfer function.

For three neutron detectors at r; ,i= 1, 2, 3, de-

noting 8,,{w) = 85(r;,w), the detector signal auto
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power spectral density {APSD) is determined from

the formula:

2
APSD‘§¢'(L¢J) = % * [Gzza:szz + G?ySyy +

+2GizGiySzy] (7)

In the same way, the cross power spectral deansity

(CPSD) can be written as:

2
CPSD&@J%’ (w) = %’f * [Giszszz +

+Ginijyy + (G,-;,ij + ijG:‘:)APSDE,ey] (8)

The core model used for the calculation of the
Green’s function was based on the power reactor
approximation. This Green’s function was defined
through the Poisson-type equation which in the two
dimensional cylindrical mode! leads to the simple

real analytical solution:

1 R? + (5)? - 2rrocosy

Glr.w,ro,ip0 = 0) = E*Iag [ re + 18 — 2rrocosyg

(9)
Where (r,¢) and {rq¢, o) denote the detector and
rod coordinates respectively, and R is the core ra-
dius.

Regarding the displacement spectra, it was de-
rived in [2] from a realistic model of random pres-
sure fluctuations, as the driving forces for the rod
motion.

The possible variety of the displacement compo-
nent spectra can be parametrized by two variables,

an ellipcity {anisotropy) parameter k and the pre-

ferred direction of vibration o as:

S:e = 14+ k=*cosla
Syy = 1—kx*cosu (10)
Szy = 2xsina

In this model, the displacement cross spectrum,
and thus all displacement spectra, are real. Using
the power reactor approximation even the transfer

function will be real , and hence, all neutron noise

spectra too. This means that one can work with

real arithmetics.

2.2 Neural Network Localization Tech-

nique

Neural network are parallel data processing sys-
tem with efficient input-output mapping capabili-
ties. Its model design consists of a training proce-
dure where a learning paradigm computes the ap-
propiate connections weights to represent the non-
linear input-output relationship of the data set.

A neural network can solve an inverse task and
this way of solving is independent of the nature of
the problem. In other words, the use of neural net-
works offers an alternative way of performing the
inversion procedure. Only results from the direct
problem are necessary for the training of the neural
network. So, more realistic core models can be used
in the computational solving of the direct task.

Neural networks have been used in the nuclear
engineering field for parameter diagnostics. These
pilot studies include diagnostics of steam genera-
tors, vibration properties, sensor validation, valves,
feedwater flow, among others [41(5],

A method to estimate the location of a vibrat-
ing absorber rod based on the localization curves
derived directly from the spectra of neutron flux
neise measured by in-core neutron detectors is used
to supply training data for elaborating the network
based localization method 131,

Using the equations for the APSD , CPSD and
the displacement spectra, noise data correspond-
ing to given vibration parameters can be generated.
These data, if varied enough such that the possi-
ble domain of vibration positions and trajectories
is sufficientlly well covered, can serve for the train-

ing of a neural network to perform localization.
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Figure 1. Core layout of the reactor

3. Implemented Neural Net-

work

In this study, we used a three layer feed-forward
network with error backpropagation implemented
in a Fortran environment [3).

The number of input nodes is equal to the num-
ber of detector auto- and cross- spectra, and the
number of output nodes is equal to the number of
control rods in the core.

The network can be trained such that for a
given set of input spectra, it identifies one rod as
the vibrating one. This latter is made by assigning
an output equal to 1 to the node corresponding to
the suspected rod, and zero to the others.

For n detectors, the total number N of noise
signals is N = (n {n-1))/ 2 auto-spectra and cross-
spectra, respectively. This yields N = 6 for n =
3 and N = 10 for n == 4. These auto- and cross-
spectra can be calculated via (7) and (8) for any
rod position and displacement spectra.

The core layout of the cylindrical reactor show-
ing the position of neutron detectors and control

rods for 3 and 4 detectors is shown in Fig.1.

Hence, the network structure chosen consists of
6 or 10 input nodes for the case of 3 or 4 detectors
respectively and 7 output nodes. The learning pro-
cedure is based on error backpropagation algorithm

using the generalized delta rule.

Autospectra

Control rod
Identification

Cross-spectra

Input Layer HiddenLayer ~ Output Layer
(10 nodes) {7 nodes ) {7 nodes )

Figure 2. Structure of the implemented
neural network

The corresponding network arquitecture in the
3-detector case is shown in Fig.2.

The generation of the input data is done by se-



lecting randomly different vibration patterns by the
values of k, o and also the control rod number to
cover the entire range of vibration parameters and
different rod positions. Simulation of background
noise is possible by adding a Gaussian noise to each
input spectrum data.

The training procedure stops when the total
roct mean square (rms) output error, difference
between the actual and desire output vectors, av-
eraged over all training patterns of the algorithm,
reached a user-defined acceptable value. After the
training, a number of new input data were given
to the network in order to investigate the success
rate, that is the proportion of correct identification
out of all identifications.

The identification procedure is such that the
rod, corresponding to the output value with the

highest value is selected as the vibrating one.

Table I. Implemented neural network

numerical value of the largest output node and y
is the ratio of r to the second largest node value.
Those identifications which both values of x and y

are lower than 0.6 are rejected.

Table II. Implemented neural network

4 detectors
Number of | Rms | Success | Reliability
nodes error | ratio ratio
6 0.05 99.51 93.57
7 0.05 99.83 97.12
9 0.05 | 99.77 97.13
10 0.05 { 99.69 95.53

4. Discussion

In the parameter study reported in [3] a neural
network structure of 10 input nodes { 6 for the 3-
detector case) with an equal number of nodes in the
hidden layer and 7 output nodes has been applied.
In this study, we varied the number of nodes in

the hidden layer in order to increase the realibility

3 detectors
Number of | Rms | Success | Reliability
nodes error | ratio ratio
8 0.07 | 98.77 77.68
9 0.07 | 98.33 65.39
10 0.06 98.77 86.47
11 0.07 | 98.68 T7.57

ratio,

ces ratio, which shows slight variations for different

numbers of nodes in the hidden layer, the realibil-

From this results we can see that unlike the suc-

Some results of the efficiency of the trained net-
work are displayed in Table I and Table II which
show the success rate and the reliability ratio with
3 and 4 detectors respectively for different number
of nodes in the hidden layer.

The reliability ratio is the ratio of non-rejected
identifications to the total number of identifica-
The rejection criteria is based on a confi-

tions.

dence parameter (x,y) introduced in [3]. x is the

ity ratio shows a much larger sensitivity on this
number, and also, on the number of nentron detec-
tors. The superiority of the 4-detector case to the
3-detector one is very clearly demonstrated by the

realibility ratio shown in Tables I and II.

5. Concluding Remarks

The expected contribution of this study is to get
higher safety, better diagnosis interpretation and
understanding of phenomena by means of a proper

use of neutron signals analysis and neural networks.
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Neural networks have the potential of providing
an effective solution for the localization problem. A
trained network yields a guess for the rod position
directly, one can utilize the redundancy of several
detectors easily, leading to a better performance,
and once trained, the speed of identification is in-
dependent of the degree of complication and com-
puting demand of the transfer functions. The se-
lection procedure is very fast, thus the method can
be applied on line.

In order to apply this method to a more re-
alistic case we should try to eliminate any single
faulty identification. In this way, some work re-
garding the reliability of a single classification pro-
cedure is needed to increase the confidence of the
decision. In order to get ’high reliability’ in the
diagnostic procedure is necessary to study another
neural structure to compare with the implemented

one. Research is going in that direction.
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