計測自動制御学会東北支部 第 172 回研究集会(1997.12.9) 資料番号 172-7

オブザーバを用いた乱流場のフィードバック制御 Feedback Control of Turbulent Flow Field with State Observer

○早瀬 敏幸*,林 叡*

○ Toshiyuki HAYASE*and Satoru HAYASHI*

*東北大学 流体科学研究所

*Institute of Fluid Science, Tohoku University

キーワード: 乱流のフィードバック制御(Feedback Control of Turbulent Flow), 計算機援用流動場制御 (Computer-Aided Flow Field Control), 数値流体力学 (Computational Fluid Dynamics), オプ ザーバ (Observer), 分布定数系(Distributed Parameter System), 非線形系 (Nonlinear Dynamic System)

連絡先:〒980-77 仙台市青葉区片平 東北大学流体科学研究所 流動場制御研究部門 Tel: (022) 217-5253, Fax: (022) 217-5253, E-mail: hayase@ifs.tohoku.ac.jp

1. 緒言 👘

航空機・自動車等における抵抗の低減は, 環境問題,省エネルギー等に関連して重要な 問題である.壁面に分布したアクチュエータ を用いて,壁面近傍の流れ状態に応じた局所 的な入力を与えることにより,乱流変動の抑 制と,大幅な抵抗低減が可能となることが数 値実験で明らかにされている¹⁾.乱流のフィー ドバック制御を実現するためには,乱流場の 空間的な構造を実時間で計測する必要がある が,本研究では,制御理論におけるオブザー バの概念を,乱流場の制御に応用する.すな わち,制御対象の流れ場の局所的な計測デー タを,計算機上に構成した流れ場の数学モデ ルにフィードバックし,その結果得られる流 れ場の状態量の推定値を用いて制御を行う.

著者らは、既報²⁾において、有限体積法を用

いた流れの数値解析アルゴリズムに基づくオ ブザーバの基本的な構成を示すとともに,正 方形管内の乱流場について数値シミュレーシ ョンによる検討を行い,制御対象のモデルと して予め計算した数値解(「基準解」)を用い,管 内の一断面における各時刻の軸速度の推定誤 差をオブザーバの圧力境界条件へフィードバ ックすることによって,オブザーバーが速や かに基準解に収束することを明らかにした.

本報告では、実際の系への適用を考慮して、 実時間の数値計算が可能な粗い格子系を用い たオブザーバーを用いて、より高精度の数値 解の状態量を推定する問題と、このオブザー バを乱流場のフィードバック制御系に適用し た場合の抵抗低減の効果について、数値実験 により検討する. 2. 正方形管路内乱流のフィードバッ ク制御

2.1 制御系の構成

正方形断面管路内の乱流場の制御を考える. 制御系の基本的な構成を Fig.1 に示す. アクチ ュエータとしては,壁面に分布して設置され たマイクロバルブからの局所的な吹き出しと 吸い込み(図の上面),および,マイクロア クチュエータによる弾性壁の局所的な上下動 (図の下面)を考える.制御則により,アク チュエータ近傍の速度場の関数としてアクチ ュエータへの入力が決定される.本研究では, アクチュエータ近傍の速度場を得るため,多 数のセンサーを壁面上に設置するかわりに,

流路内の一断面に設けた速度センサー,ある いはその周囲に設置した圧力センサーからの 信号をオブザーバーに入力することによって, 流れ場全体の情報を推定する.

2.2 オブザーバの数値実験

対象領域と座標系を Fig.2 に示す. 基礎方程 式として、ナビエ・ストークス式

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \bullet \operatorname{grad})\mathbf{u} = -\operatorname{grad} p + \frac{1}{R_{s0}} \nabla^2 \mathbf{u} \qquad (1)$$

div

(2)

Fig. 1 Feedback control system of turbulent flow

をとる.速度場の境界条件としては,壁面上 では滑り無しの条件,上流,下流断面には周 期境界条件を与えた.また,上流,下流断面 の対応する点間には一定の圧力差を与えた. なお,Fig.2中の lout はオブザーバにおける出 力信号(u1速度成分)の測定位置を表す.

著者の一人は、既報⁽³⁾において、正方形管路 内の発達乱流の数値シミュレーションを行っ た.Table 1に示す2種類の格子系における数 値解より得られた平均速度ベクトル場を Fig. 3 に示す。十分な解像度を持つ格子(B)の解は 2次流れの存在を明瞭に示している.一方, 格子(A)の解にも定性的には2次流れが認めら れるものの、流れ場を定量的に表していると は言い難い.格子(B)では良好な精度をもつ解 が得られるが、Table 2に示したように1計算 ステップあたり 100s の計算時間を要するため、 実時間計算を必要とするオブザーバに格子(B) を用いることは適当でない、オブザーバでは、 フィードバックの効果により、解の精度が改 善されることが期待できるので,格子(A)を用 いてオブザーバを構成することとし,格子(B) の解を基準解として, x1=loutの断面における 10 ×10点のui速度成分の誤差をオブザーバの圧 力境界条件にフィードバックした.非定常数 値計算の一例を Fig. 4 に示す. 図は, x₁=l_{out}の 断面中心における ui 速度成分の時間変化であ

Fig. 2 Geometry and coordinate system.

Table 1 Computational condition.

る.オブザーバは粗い格子(A)を用いているに もかかわらず,格子(B)の解に速やかに収束し ていることが分かる.

オブザーバの基準解への収束は下流方向に 徐々に劣化する傾向がある⁽²⁾.Fig.5は,流路中 央断面(x₁=2)における誤差ノルム

 $\left\|\mathbf{u}(t,\mathbf{x}) - \mathbf{u}^{*}(t,\mathbf{x})\right\|_{\mathbf{V}} = \left[\int_{\mathbf{V}} \left\{ u_{1} - u_{1}^{*} \right)^{2} + \left(u_{2} - u_{2}^{*}\right)^{2} + \left(u_{3} - u_{3}^{*}\right)^{2} \right\} d\mathbf{V} / \mathbf{V} \right]^{\frac{1}{2}}$ (3)

の時間平均値の分布である.ここで, u, u*は それぞれオブザーバおよび基準解の速度ベク トル場である.Fig.5(a)の結果を同図(b)と比較 すると,フィードバックの効果で, 誤差がお よそ1/6に減少していることが分かる.

2.3 フィードバック制御の数値実験

オブザーバを用いた乱流場のフィードバッ ク制御の数値実験の結果を以下に示す.流体 の吹き出しと吸い込みを行うためのノズルを 設けた正方形断面管路を Fig.6 に示す.フィー ドバック制御則としては, Choi ら¹⁾により物理 的考察に基づき提案されたものを採用し,壁 面から一定距離離れた点における,壁に向か

Fig. 3 Mean velocity vector field.

standard solution. $(K_P=4)$

う速度成分に比例した吹き出しあるいは吸い 込みを行う.

$$u_{blow} = K_f u_{ap} \tag{4}$$

ここで, K_F--1 の場合に, 乱流変動の抑制と摩 擦抵抗の低減が期待できる.

Fig. 6 Square duct with control holes.

乱流場のフィードバック制御に関する数値 実験の結果を Fig. 7 に示す. K_F=-1 の場合に, 平均軸速度が増加しているが(Fig. 7(a)), これ は乱流の変動速度の減少(Fig. 7 (b))にともなっ て摩擦抵抗が低減することによる.

上の結果は,壁面に向かう速度成分が全て 測定できるとしてフィードバックを行った場 合の結果であるが,次に,オブザーバを用い て推定した速度を用いて制御を行った結果を Fig.8に示す.図より,オブザーバを用いるこ とにより,抵抗低減の効果が 40%程度に減少 することが分かる.

3.結 言

オブザーバを用いた乱流場のフィードバッ ク制御を実現するための基礎的研究として, 正方形管路内の乱流場を対象として数値実験 を行った.実際の系への適用を考慮して,オ ブザーバに実時間計算が可能な比較的粗い格 子系を用いた場合でも,制御対象からのフィ ードバックの効果により数値解の推定誤差が フィードバックを施さない場合の 1/6 程度に 減少し,十分な状態推定が可能なことを示す とともに,壁面近傍の変動速度を打ち消すよ うな制御入力を与えることにより,摩擦抵抗 が減少することを示した.今後は,実験によ

(a) Variation of axial velocity component

- (b) Variation of approaching velocity
- Fig. 7 Computational result for feedback control of turbulent flow.

Fig. 8 Comparison between feedback control systems with and without observer

る検証を行う予定である.

参考文献

- (1) Choi, H, Moin, P. and Kim, J., J. Fluid Mech., 262, 75 (1994).
- (2) 早瀬,林,機械学会論文集 62-598, B 2261 (1996).
- (3) 早瀬, 機械学会論文集 61-591, B 3967 (1995).