計測自動制御学会東北支部第174回研究集会(1998.5.8) 資料番号174-5

感温磁性薄膜を用いた光センサの構成

Construction of Photosensor Utilizing Temperaturesensitive Magnetic Thin Film

 ○小原 豊直,高橋 司,長田 洋,千葉 茂樹,徳田 春男,吉田 豊彦,関 享士郎
 ○Toyonao OBARA, Tsukasa TAKAHASHI, Hiroshi OSADA, Shigeki CHIBA, Haruo TOKUTA, Toyohiko YOSHIDA, Kyoshiro SEKI

岩手大学

Iwate University

キーワード: 感温磁性薄膜(temperature-sensitive magnetic thin film), 温度依存性(temperature dependence), スパッタ法(sputtering method), 光センサ(photosensor), 赤外線 (infrared rays)

関享士郎, 囮:019(621)6380 Fax:019(621)6380, E-mail: seki@iwate-u.ac.jp

1. まえがき

感温磁性薄膜光センサ TTP (Temperaturesensitive Magnetic Thin Film Photosensor) は、照射された光エネルギーを、熱エネルギ ーを介して磁気特性の変化として出力するセ ンサである.

従来使われてきた光センサには、光導電効 果、光起電力効果、光電子放射効果及び魚電 効果を利用したものがあるが^{1)~4}、これらはい ずれも受光部の電気的特性が光によって変化 する性質を利用している。

TTP は、室温付近で二次相転移を示す強磁 性体であり、キュリー温度を任意設定できる ことから、レラクタンス変化量を大きくとる ことができ、任意の温度範囲において高感度 のセンサを構成できる.

本論文では、まず TTP の作製方法を述べ、

図 I TTP の作製工程 Fig. 1 Preparation profile of TTP.

連絡先:〒020-8551 岩手県盛岡市上田 4-3-5 岩手大学工学部電気電子工学科 電子システム工学講座

次いで可視光及び赤外線による応答特性について報告する。

2. TTP の作製方法

図1に感温磁性薄膜光センサ TTP の作製工 程を示す. バルクフェライトをターゲットに したスパッタリングにより薄膜を形成し. 熱 処理を施すことによって TTP が得られる. タ ーゲットとして, 室温付近にキュリー温度 Tc を有する Mn-Zn 系フェライト (Tc=50°C, 金 属重量成分比=Fe: 65wt%, Mn: 14wt%,

Zn: 21%)を使用した. このターゲットにより、60mTorrのArガス雰囲気中、RF電力200Wの条件下で、4時間スパッタリングすると、シリコン単結晶基板上(長さ7.5mm、幅4.5mm、厚さ1.0mm)の片面に厚さ1µmの薄膜が得られる.

このスパッタリングで得られた薄膜は、ア モルファス状態で成膜されているため、ほと んど磁気特性を持たない、従って、バルク状 態と同様の結晶構造(スピネル構造)を再現 させるために何らかの処理を行う必要がある。 一般に、バルクフェライトの固相反応温度は 800℃~1050℃であることが知られている^⑤. そこで、作製されたアモルファス状態の薄膜 に対して前述の範囲での熱処理を施すことに よって、スピネル構造の再結晶化が期待でき る.

図2に熱処理前後の薄膜の X 線回析図を示 す. 同図より,熱処理以前の薄膜ではピーク が見られないアモルファス状態であるが,熱 処理によりスピネル構造を示す(220),(311), (400)及び(440)面で回折ピークが表れて おり結晶化していることがわかる.なお熱処 理条件として,Ar ガス雰囲気中において熱処 理温度及び時間をそれぞれ 970℃・8時間と し,その後クラックの発生を避けるため室温 まで100℃/時間の冷却を行った[®].

図3はTTPの磁化ループの温度特性である. 同図より、磁気特性を示すパラメータである 飽和磁化、保持力、ヒステリシス損などがTTP の温度の上昇に伴ってそれぞれ減少していく 傾向が見られる. 試料温度 10℃で 170emu/cm³ の飽和磁化は、30℃では 80emu/cm³ へと低下 し、50℃になると 10emu/cm³ となり、ほとん ど磁化は消失する. この傾向はターゲットで ある Mn-Zn 系フェライトの磁化特性と類似し ており、顕著な温度依存性を示している.

 $\mathbf{2}$

3. 光センサの構成及び動作

3.1 構成

図4はTTPを用いた光センサシステムの構成を示す.TTPにMR素子MRを接着し、その下部に永久磁石MGを接着した構造となっている.光照射Lによる温度上昇があった場合、磁性薄膜中の飽和磁化が低下し、その結果磁気ループ中のレラクタンスが増大する.このレラクタンスの増加は磁気ループ中の磁束の低下をもたらすので、MR素子で抵抗の変化として検出され、次いでICにより信号増幅され、Voとして出力される.なお、TTP方式のセンサ部にはMR素子の感知幅を超えることを防ぐため、受光面So(直径 3mmの円面積7.06mm²)なるカバーを施した.

3.2 光センサの動作

図5は TTP にタングステンランプによる白 色光を照射した場合の,センサの出力の過渡 応答過程である.ステップ状の光の照射に対 して出力電圧波形は急峻に立ち上がった後, ややゆっくりとした減衰特性を持つ応答特性 を示す.照度 E が 8000lx の時,50%振幅値で 15 秒間のパルス上の出力電圧が得られた.ま た,この時の出力電圧のピーク値は47mV(白

色光照射約9秒後)であった. 4000lx の照度 では、ピーク値は 22mV となり、2000lx では 12mV へと低下する. 即ち、入射光の強度が 高いほど、出力電圧のピーク値が大きくなる 傾向を示す.

図6は照度と出力電圧の立ち上がり時間 t_r との関係を示す. 同図より, 照度の増加につ れて応答時間は短くなる傾向を有している. なお, 同一照度では, 周囲温度が高い方が t_r を長くなる傾向が見られる.

図7は照度と出力電圧のピーク値との関係 を示すが、同図より、両者の間にほぼ直線的

な関係が見られる. 周囲温度が 20℃の場合, 300lx から 8000lx の照度に対し V₀は3mV か ら 45mV へと増加しており, 周囲温度が 25℃ の場合には 2.5mV から 40mV まで変化する. また, 同一照度では, 周囲温度が低いほど V₀ が大きくなる傾向が見られる. このように, TTP は低照度から高照度までの光に応答する ため, 光センサとして十分な機能を有してい るものと考えられる.

光の照射で、このようにパルス状の応答波 形が得られる理由としては次のように考えら れる、TTP はステップ状の光に対して1次遅

Fig.7 Photo conversion characteristic of TTP.

れで熱が伝達するが、このとき TTP の磁束は TTP の温度変化に比例して変化する. TTP の 温度は急峻なパルスとして伝達するので、磁 束の変化もパルスとなる. MR における抵抗 の変化は磁束の変化に比例するため、出力は ステップ状の光を微分した波形として得られ る.

図8は照度をパラメータとした場合の Voと TTP の受光面積との関係を示す. 同図は受光 面積SxをSo/4からSoへと変化させた場合の 出力電圧のピーク値を求めたものである. 照 度が 8000lx の場合, Sx/So が 0.25 のとき Vo は22mVであるが、0.5 では33mVとなり、1.0 では 47mV へと増加して受光面積による影響 が明らかである. 照度が 6000lx の場合でも同 様の傾向が見られ、面積に対し、照度が高い 方が出力電圧も高くなる. 受光面積と出力電 圧との関係は必ずとも直線的ではないが、Vo が受光面積や照度によって制御される特性を 活用して簡単な一次元の機械的あるいは光学 的な操作と組み合わせることによってパター ン認識や光源の大小の判定に利用できるもの と考えられる. なお、受光面積と出力電圧の 関係が直線的な関係とならない理由として、 受光面積の中心と円周近傍で MR 素子の検出 感度が異なるためと思われる.

3.3 赤外線センサへの応用

図9は TTP 上にフィルタがない場合、赤外 線透過フィルタ ITF を設置した場合、及び熱 吸収フィルタ HAF を設置した場合についての 応答特性である。表1に ITF, HAF 両フィル タの特性を示す、フィルタの有無に関わらず 照射光に比例した出力が得られている。

ITF を設置した場合、フィルタがない場合 に比べて約7割程度の出力が得られたが、HAF を設置した場合は2割前後の出力しか得られ なかった。このことから TTP は赤外線に対し

4. あとがき

以上, RF スパッタ法により感温磁性薄膜光 センサ TTP を作製し、可視光及び赤外線照射 時における諸特性について報告した。

TTP は従来用いられてきた光導電効果,光 起電力効果,光電子効果及び焦電効果等の電 気的特性を利用したものとは異なり,光によ る磁化の変化という新しい原理に基づいてお り,TTP を用いることによって構成が簡略で, 小型,計量,かつ高感度なセンサシステムを 実現することが出来た.

ここで報告した TTP は物理的にも化学的に も極めて安定な素子であり、耐環境性に優れ ており、また赤外線に対しての応答も顕著に 現れており、赤外線センサとしての応用も考 えられる.

図9 TTP の赤外線特性

Fig.9 Infrared characteristic of TTP.

表 I フィルタの透過率

Table I Transmittance of filter.

コノル.ケーニー	近赤外線透過率					
[nm]	400	500	600	700	800	900
ITF	0	0	0	0	86	91
HAF	89	88	86	62	29	5

5. 参考文献

- 1)高木、山田:半導体物性, 産報 (1967)
- 2)伊吹, 吉沢: 半導体素子, 日刊工業新聞社 (1965)
- 3)高木:応用計測通論,啓学出版 (1972)
- 4)高見、須田、古閑: 焦電効果を利用した赤外
 線検出器、応用物理学会論文誌、Vol.37、No.
 2, pp.147-156 (1968)
- 5)安宍善史,長田洋,石井修,島津誠一,千 葉茂樹,関享士郎,高橋強,吉田豊彦:ス パッタ法による感温磁性薄膜の作製と特性 評価,電気学会マグネティクス研究会資料, MAG-96-153 (1996)
- 6)安宍善史,石井 修,小原豊直,千葉茂樹,高 橋強,長田 洋,吉田豊彦,関享士郎:熱処理 による感温磁性薄膜の磁気特性改善,平成9年 度電気関係学会東北支部連合大会,[2A11] (1997)