計測自動制御学会東北支部第175回研究集会(1998.6.19)

資料番号175-1

先端加速度を利用した1リンクフレキシブルアームの位置制御

Position Control of One Link Flexible Arm By Using Acceleration of End Poin

○佐藤勝俊* 成田光** 澤健史***

○ Katsutoshi Sato*, Hikaru Narita**, Takeshi Sawa***

*八戸工業高等専門学校, **日本マイクロニクス(株), ***日本電気フィールドエンジニアリング(株)

*Hachinohe National College of Technology, **Japan Micronics Co.Ltd.,

***NEC Field Engineering Co. Ltd.

キーワード :フレキシブルアーム (Flexible Arm), 加速度 (acceleration), 位置制御 (position control), 外乱オブザーバ(Disturbance observer), AFC (Active Force Control)

連絡先:	〒039-1192 八戸	市田面木字上野平1	6 - 1	八戸工業高等専門学校	交 佐藤	勝俊,
	Tel : (0178)27-72	265. Fax: (0178)2	7-7275,	E-mail:sato-m@Ha	chinohe-c	t. ac. jp

1. 緒言

一般にロボットアームは変形のない剛体と して設計されているので、結果的に頑丈で重 いものとなり、これを駆動するには高トルク のモータを必要とする。アームを軽量化する ことで、低トルクのモータで十分となり、ロ ボットアームの運動を高速化し、かつ消費エ ネルギーを小さくすることが可能となる。し かし、軽量なアームは必然的に柔軟になり、 フレキシブルアームとしての取り扱いが必要 となる。特に宇宙ロボットの分野では、アー ムの軽量化が必要であるので、この問題に関 する関心が高く、これまでにもたくさんの研 究がなされてきている^{1~20}。筆者ら³⁰ も、2 リンクのフレキシブルアームの端点位置制御 について、Asada⁴⁰の数学モデルを用いてシミ ュレーションを行い、仮想リンク座標系(V LCS)を用いてAFC制御を適用すると、 制御精度が良くなることを示した。しかしな がら、この場合、図1のようにリンクの始点 と終点を結ぶ角度が計測できることを前提と していたが、実際にはその計測は難しい。

- 1 -

そこで本研究では、1リンクのフレキシブ ルアームについて、先端角度ではなく先端の 加速度を計測し、そのデータを用いて外乱オ ブザーバに相当する制御方法であるAFC (Active Force Control)を試み、シミュレー ションと実験によりアームの挙動を調べた。

2. A F C (Active Force Control)

目標軌道を制御するうえで、PD制御則が 最も簡単である。しかしリンク間の干渉やコ リオリカ、遠心力の影響が大きいと、十分な 軌道精度が得られない。また、外乱の影響を もろに受けたり、質量などのパラメータ変動 にも弱い。そこで、Hewitらは、内部干渉力や 外力などの影響を相殺する一種の加速度制御 法であるAFC[®]を提案した。しかしながら、 当時加速度計の精度の良いものがなく実験は 行っていなかった。

この考えをさらに発展させたのが、大西ら による外乱オブザーバ[®]である。一般に外乱 オブザーバは、図2のように構成される。図 において外乱は、プラントの伝達関数のノミ ナル値を基に算出されているが、モータの運 動制御の場合、次のようになる。

アームが取り付けられたモータの運動方程 式は次式となる。

J d ω/d t + T₁ = T_m (2.1) ただしT_mはモータの発生トルク、T₁は負荷 トルク、J はモータ軸換算慣性、ωは角速度 である。

モータのトルクTmは、K:をトルク係数と すると、印加した電流に比例し、

 $\mathbf{T}_{\mathbf{m}} = \mathbf{K}_{\mathbf{t}} \mathbf{I}_{\mathbf{a}} \tag{2.2}$

また負荷トルクΤ」はΤιπτを内部干渉力、 Τ_{ext}を外力、Fをクーロン摩擦力、Dωを 粘性摩擦力とすると、

 $T_1 = T_{int} + T_{ext} + (F + D\omega)$ (2.3)

ロボットの慣性モーメントJは姿勢によっ て大きく変動するので、J_nを慣性モーメン トのノミナル値とすると、モータにとっての 全外乱T_{dis}は、運動の妨げになる負荷トル クに慣性モーメントの変化を加えて、 T_{din}=T_{int}+T_{ext}+F+D ω

+ (J – J_n) sω

となる。したがって、(2.1)式は J n d ω/d t = K t I a - T d i s (2.5) (2.5)式より、

(2, 4)

T_{dis}=-J_ndω/dt+K_tI_n (2.6) (2.7)式は、角加速度(dω/dt)と加えた電 流(I_n)から外乱(T_{dis})が計算できることを 意味している。すなわち図3のようにdω/ dtを計測し、I_nを与えてT_{dis}が計算され るならば全外乱トルクが推定でき、それをフ

図3 外乱推定とそのフィードバック

ィードバックし、コントローラの命令トルク に加えることにより、モータに対するすべて の外乱を打ち消す効果が実現できる。大西は 加速度計を用いる代わりに、角速度から加速 度を計算し外乱を推定する図4のような外乱 オブザーバを考案している。

本研究では、モータ軸の角度から加速度を 数値的に求め外乱を算出する方法と、アーム 先端に取り付けた加速度計により加速度を計 測し、その値を用いて外乱を算出する方法に ついて検討した。なお、この制御法は、本質 的に加速度制御法であり、逆の見方からすれ ば力制御法であるので、Hewitは、これを Active Force Controlと呼んでいる。

図4 角速度ωによる外乱オブザーバの構成

図5にAFCの構成を示す。目標加速度、 速度、位置が入力として与えられる。システ ム内部に外乱を消すためこのAFCのループ を持ち、その外に、軌道誤差を時々刻々修正 し目標軌道上を正確に移動させるためのPD 制御ループが設けられている。

3. フレキシブルアームの数学モデル

シミュレーションに必要なフレキシブルア ームの数学モデルは、坂和らのモデル"を用 いた。

本来は内山[®]のように、重力も考慮した、 3次元の取り扱いが必要であるが、簡単にこ こでは、アームは水平面内で運動し、重力の 影響は受けないものとする。

アームの長さをL,アーム材料のヤング率 をE,線密度をρ,断面の2次モーメントを Iとし、α=EI/ρとすると、アームの弾 性によるたわみの偏微分方程式と境界条件は つぎのようになる。

 $\ddot{w}(r, t) + 2\delta a w'''(r, t) + a w'''(r, t)$

$$=-\mathbf{r}\,\boldsymbol{\omega}\,(\mathbf{t})$$
 (3.1)

また境界条件は次式となる。

図5 AFCの構成図

 $\mathbf{w}(0, t) = \mathbf{w}'(0, t) = \mathbf{w}''(L, t) = 0 \\ \mathbf{w}'''(L, t) + (m/p)\mathbf{w}''''(L, t) = 0$ (3.2)

ここに $\omega(t) = \dot{\theta}(t)$ であり、(・)は時間 tに関する微分を、また(')は空間座標rに 関する微分を表わす。

(3.1)式より、アームのたわみ振動を決定 するのはモータの回転加速度であることがわ かる。

一方、ギア比をN、モータの慣性モーメン トをJ_m,モータの発生トルクをτ(t),粘性 摩擦係数をμとすると、モータの運動方程式 は次のようになる。

$$\mathbf{J}_{\mathbf{m}}\mathbf{N}\dot{\boldsymbol{\omega}}(\mathbf{t}) + \mu\mathbf{N}\boldsymbol{\omega}(\mathbf{t}) = \tau(\mathbf{t}) + \frac{\mathbf{E}\mathbf{I}}{\mathbf{N}}\mathbf{w}^{\prime\prime}(0, \mathbf{t})$$
(3.3)

直流モータの電機子電圧をu(t),電機子 抵抗をR,モータのトルク定数をK₇,誘起 電圧定数をK₈とすると

$$\dot{\omega}(t) = -k_1 \omega(t) + k_2 w''(0, t)$$

+ $k_3 u(t)$ (3.4)

. . .

を得る。たたし

$$k_{1} = \frac{\mu R + K_{\tau}K_{b}}{RJ_{m}}, \quad k_{2} = \frac{E I}{N^{2} J_{m}},$$

 $k_{3} = \frac{K_{\tau}}{NR J_{m}}$
(3.5)

つぎに、(3.1)式の解を求めるため、つぎ のような固有値問題を考える aw'''(r)=λw(r) (0≤r≤L) (3.6) w(0)=w'(0)=0]

w'''(L) = 0 $w'''(L) + (m/pa)\lambda w(L) = 0$ (3.7)

固有値入に対して

$$\lambda = \alpha(\beta/L)^4 \qquad (3.8)$$

のようなパラメータβ>0を考えると境界条 件(3.7)式より、βが

$$1 + \cosh\beta\cos\beta + \frac{m}{\rho L}\beta \\ \times \{\sinh\beta\cos\beta - \cosh\beta\sin\beta\} = 0 \quad (3.9)$$

を満足する場合に限って、(3.6),(3.7)式の 境界値問題は解を持つ。したがって、 $\beta_{1} \ge 0 < \beta_{1} < \beta_{2} < \cdots \ge 満足する(3.9)式の解と$ すると、固有値は $<math>\lambda_{i} = \alpha(\beta_{i}/L)^{4}$, (i = 1, 2, 3 · · ·) (3.10) で与えられる。 また対応する固有関数 $\phi_{i}(r)$ は $\alpha \phi_{i}'''(r) = \lambda_{i} \phi_{i}(r)$, (i = 1, 2, · · ·) (3.11) を満足し、 1 $\begin{bmatrix} \beta_{i} r & \beta_{i} r \end{bmatrix}$

$$\Phi_{i}(\mathbf{r}) = \frac{1}{c_{i}} \left\{ \cosh \frac{p_{i} \mathbf{r}}{L} - \cos \frac{p_{i} \mathbf{r}}{L} - \gamma_{i} \left(\sinh \frac{\beta_{i} \mathbf{r}}{L} - \sin \frac{\beta_{i}}{L} \right) \right\} \quad (3.12)$$

$$(u, v) = \int_{0}^{L} u(r)v(r) + \frac{m}{\rho}u(L)v(L)$$
(3.14)

によって内積を定義し、

$$\mathbf{c}_{i} = \left[\mathbf{L} + \left(\frac{\mathbf{p}}{\mathbf{m}}\right) \left(\frac{\mathbf{L}}{\beta_{i}}\right) - \left[\frac{1 + \cosh\beta_{i} \cos\beta_{i}}{\sinh\beta_{i} + \sin\beta_{i}}\right]^{2} \right]^{1/2}$$

とおくと $(\phi_i, \phi_i) = 1$ となる。

(3.1)式の偏微分方程式の解は、固有関数 φ₁(r)を用いて

w (r, t) =
$$\sum_{\lambda=1}^{\infty} \frac{1}{\lambda_{i}} u_{i}(t) \phi_{i}(t)$$
 (3.15)

と展開することができるので、(3.15)式を (3.1)式に代入して(3.11)式を用い、さらに φ₁(r)との内積をとると時間項u₁(t)は

 $\ddot{\mathbf{u}}_{i}(\mathbf{t}) + 2\delta \lambda_{i} \dot{\mathbf{u}}_{i}(\mathbf{t}) + \lambda_{i} \mathbf{u}_{i}(\mathbf{t})$ $= -\lambda_{i} \mathbf{b}_{i} \mathbf{f}(\mathbf{t}) \qquad (3.16)$

となる。ただしbi、f(t)は、それぞれ、 b₁=(r, ϕ_1), f(t)= $\omega(t)$ (3.17)

これらの式に使われている i はたわみのモ ードを表わしており、今回のシミュレーショ ンでは 3 次のモードまで考慮した。

よってフレキシブルアームの運動は、式 (3.16)のiに1から3まで代入した3つの式 と、式(3.4)のモータの運動方程式を連立さ せて求めることが出来る。

また、たわみwは式(3.15)よりi=1から 3まで加えることにより求められる。

4. シミュレーション

シミュレーションには、連続系シミュレー ション言語ACSL (Advanced Continuous Simulation Language)を用いた。実験装置と 同じように、アームの先端に集中荷重mを持 って水平面内で回転するようなフレキシブル アームを考える。

目標角度をπ/3 [rad]とし、アームは0.3 秒間一定加速度で加速し、次の0.3秒は減速 してその後停止させることとした。PD制御 とAFCで制御した場合のシミュレーション 結果を以下に記す。

図6はPD制御において、実験により試行 錯誤的に求められた比較的良好なフィードバ ックゲインkp=2.2,kd=0.6を用いてアームの 先端の角度(THT)をフィードバックして 得られた結果である。根本角度(TH)は収 束するものの、肝心の先端角度(THT)は 僅かだがふらついた。PD制御だけでは、い くらフィードバックゲインを調整してもこの ふらつきは解消しなかった。

図7にAFCを使用し、アーム根元角加速 度を用いてTdisを推定した場合と、実験装 置と同じように、アーム先端角加速度を利用 してTdisを推定した場合との比較を示す。

この図より(a)(b)両方ともTHおよびTH Tが速やかに収束していることがわかる。強 いて言えば、アーム先端角加速度を利用した ほうが立ち上がりがよい。

また、角度の誤差を補正するためのPD制 御のためにフィードバックする角度データに、

- 5 -

アームの先端角度THTを用いたほうが、ア ームの振動は速やかに減衰した。

以上の結果より、後述の実験装置と同じように、先端角加速度を利用して外乱を予測し 位置制御するAFCによる制御の有効性が確 認できた。

5. 実験

実験装置の略図を図8に示す。実験を始め る前に、ギアのバックラッシュを調べた結果、 図9に示すように、ギヤのバックラッシュが 約1度位とかなり大きいことがわかった。 したがって減速機の選定が不適当であること がわかった。またアームは、図10のように 一定の周期で振動しており、また時間が経過 しても振動が収まらないので、使用したアー ムが低減衰率の弾性体であることがわかる。

図8 実験装置概略図

- 6 -

5.1 PD制御による実験結果

目標角度を45°比例ゲインkp=2.5、微分 ゲインkd=0.1とし、モータ軸に取り付けたエ ンコーダの角度検出値をフィードバックした 場合のPD制御による応答を調べた。また負 荷軸にもエンコーダを取り付け負荷軸の応答 も計測した。結果を図11に示す。モータ軸 にはバックラッシの影響がほとんど現れない ので、モータ軸自体の制御はうまくいってい るように見受けられる。しかしながら、負荷 軸の応答を見るとバックラッシュの影響も現 れ、アーム先端の振れが収まっていないこと がわかる。このように、PD制御法は最も簡 単な方法であるが、根元のモータ軸の制御は うまくいっても動作速度が速くなってくると、 アームが弾性変形するため先端が振れてしま い、また振動もなかなか止まらない。

図11 アーム根元角度をPD制御

5. 2 AFCによる実験結果

目標角度45°とし、モータのエンコーダ の値を角加速度に変換し制御した場合と、ア ーム先端に取り付けた加速度計の値で制御し た場合の比較をおこなった。

エンコーダの値から角加速度を算出しAF C制御した場合の実験結果を図12に示す。 モータの加速度を用いた場合でもバックラッ

シュの影響でガタついているが、PD制御に 比べ先端の加速度変化も急速に収まり、アー ムの振動をかなり抑えていることが解る。

アーム先端に取り付けた加速度計の値で 制御した場合、図13に示すように、外乱推 定及び相殺効果が明確に見られ、振動が急激 に滅衰し、アーム先端の振れをうまく抑える ことができている。

以上のようにAFC法では加速度信号に基 づく外乱推定及び、相殺効果が明確に見られ、 振動が急激に減衰し、アーム先端の振れをう まく抑えることができた。

6. 結言

1リンクのフレキシブルアームの位置制御 についてシミュレーションと実験を行い、ア ームの振動および挙動を調べた。

シミュレーション結果より、アームの先端

角度をフィードバックしたほうが根元角度を フィードバックするよりも良好な結果が得ら れることが確認された。またAFCにおいて は、実験装置と同じようにアーム先端角加速 度を入力した場合でも、良好な結果を得るこ とができることを示した。

また、あらかじめ予測されたことであるが、 PD制御にもとづく制御実験では、駆動用モ ータの制御はうまく行っても、動作速度が速 くなってくると、アーム先端が弾性変形によ り振れてしまい、振動もなかなか止まらなか った。これに対しAFC法では、加速度信号 に基づく外乱推定および相殺効果が明確に見 られ、振動が急速に減衰し、アーム先端の振 れを抑えることができた。しかしながら、ギ ヤのバックラッシュが大きいので、シミュレ ーションとの定性的な比較しかできなかった ので、現在減速機の変更を検討してる。

参考文献

- 特集:フレキシブルアーム、日本ロボット学会誌、
 6巻、5号、1988.
- 2)特集:フレキシブル・マニピュレータ,日本ロボット学会誌,12巻2号,1/62,1994.
- H. Asada, Z-D. Ma : Inverse Dynamics of Flexible Robot Arms: Modeling and Conputation for Trajectry Control, Trans. ASME, J of DSMC, Vol. 112, 177/185, 1990.
- J. R. Hewit, J. R. morris, K. Sato, F. Ackermann : Active Force Control of a Flexible Manipulator by Distal Feedback, Mechanism and Machine Theory, Vol. 32, No. 5, 583/596, 1997.
- 5) Hewit, J. R., Burdess, J. S. : Fast dynamic decoupled control for robotics using active

force control", Mechanism and Machine Theory, Vol. 26, No. 5(1981).

- 6) 大西公平:外乱オブザーバによるロバスト・モーションコントロール",日本ロボット学会誌, 11巻,4号,pp.486-493(1993).
- 7) 坂和、松野:"フレキシブルアームのモデリング と制御",計測と制御, 25-1(1986), 64/69.
- 8) 近野、内山、貴答、村上:加速度指令による三次 元フレキシブルマニピュレータの振動抑制制御。
 日本ロボット学会誌、12巻、8号,1166/1174,1
 994.