計測自動制御学会東北支部 第 176 回研究集会 (1998.7.24) 資料番号 176-12

惑星探査ローバーの走行ダイナミクスのモデル化および 実験検証

Modeling and Experiment for Motion Dynamics of a Planetary Exploration Rover

○吉田 和哉, 志和 知子

○ Kazuya Yoshida and Tomoko Shiwa

東北大学 大学院 工学研究科 航空宇宙工学専攻

Dept. of Aeronautics and Space Engineering, Tohoku University

キーワード : 惑星探査 (Planet Exploration), 連接シャーシ (Artculated Chasis), タイヤモデル (Tire Model), すべり率 (Slip Rate), ダイナミクスシミュレーション (Dynamics Simulation)

連絡先: 〒980-8579 仙台市青葉区荒巻字青葉 01 東北大学 大学院 工学研究科 航空宇宙工学専 吉田和哉 Tel: (022)217-6992, Fax: (022)217-6992, E-mail: yoshida@astro.mech.tohoku.ac.jp

1. はじめに

1997年, NASA(米航空宇宙局)から火星に送り 込まれた火星探査ローバー,マーズパスファイン ダーは,惑星表面上を走行し移動することが惑星探 査の可能性を飛躍的に拡大することを実証したと いう点において,大きな成果を上げた.また,これ からの宇宙開発の一つとして NASA, JPL (米ジェッ ト推進研究所), ISAS(宇宙科学研究所), NASDA(宇 宙開発事業団)など様々な機関で月・火星探査のミッ ションが計画されている.現在の技術の延長から 考えると,テレオペレーションを用いた遠隔操作 ロボットによる探査活動が最も実現性が高い.し かし宇宙環境においては通信遅延や伝送容量不足 の問題があり,探査ローバーには相応の自律ナビ ゲーション能力が求められる.

日本では、ローバーに関する本格的な研究が ISAS や NASDA で始まったばかりであるが、大 学での研究は非常に少ない、広瀬らはローバーの 走行系設計について精力的な研究を行っているが, 不整地における走行制御やナビゲーションについ ての研究は未着手のままである.自然環境におけ る実用的なすべりモデルは明らかでなく,具体的 なすべり計測についても報告はほとんど見当たら ない.ローバーが車輪走行を行うと想定した場合, 車輪と地面のすべりの力学が重要となる.車輪の すべりや空回りは走行制御を行う上で是非ともモ デル化して明らかにしておきたい現象である.

本研究室では、不整地におけるローバー走行の ダイナミクスについて強い興味を持っており、ロー バーの走行に対するすべりのモデルを明らかにし、 自然環境における車輪走行ローバーの走行制御と 商用通信回路を用いたオペレーション技術を明ら かにすることを最終的な目標とする.そこで、不 整地踏破能力の高いローバーの走行モデルを製作 し、走行制御の基礎となるすべりを含む運動計測 を行う.また、タイヤをモデル化することにより、 平地におけるタイヤのすべりを考慮にいれたロー バーの走行ダイナミクスシミュレーションを行い, 実際のローバーの走行と比較検討する.

2. ローバーの機構に関する考察

現在アメリカ,ロシアを中心として開発されて いる惑星探査ローバーは踏破性能に優れた6輪型 が主流であり、大きく分けると以下の2つのタイ プに分類される。

A:3節連結形

B:分散支持形

タイプ A は左右一対の車輪をつけた節を3節連 結した形であり、JPL の Robby 、ロシアの Marsokhod に見られる、このタイプは研究用のテスト ペッドには適しているものの胴体が3つに分割さ れることから、フライトモデルとしては設計しに くいことが指摘されている。

タイプBは6つの車輪をてこを用いて分散支 持するものであり、胴体を分割する必要はない。 Rocker-Bogic と呼ばれるてこ連結方式を用いるこ とによりタイプAよりも障害物乗り越え能力は高 いと言われ、アメリカの火星探査PathFinder 計画 に採用された.しかし、車輪内にモーターを組み 込む必要があり、別途ステアリング用のモーター が必要であるなど、機構としては製作しづらいと いうデメリットがある.

本研究では研究用テストベッドとして踏破性能 に優れ,かつ設計・製作が容易であるタイプAを 採用し,走行モデルを開発する.

3. ローバーの構成

Fig. 1 Configration of Proto-Explorer

本研究で開発する走行モデルの構成を図1に示 す、左右一対の車輪をもつ3節が受動関節によって 連結されている。節1と節2の間はロールとヨー の2自由度とし、ヨー関節には板バネによるコン プライアンスを持たせる。節2と節3の間はロー ル、ピッチ、ヨーの3自由度とし、ピッチ関節と ヨー関節には板バネによるコンプライアンスを持 たせる。

節1,節2上の4つの車輪は駆動輪とし,DC モーターにより駆動する.節3上の2つの車輪は デッドレコニング計測のための従動輪とする.

すべての車輪および関節にはポテンショメーター を取付け、その回転の様子を計測する。

4. キネマティクスモデル

図2にローバーのキネマティクスモデルを示す. 節3は従動節なので,基本的にすべりはないと仮 定する.走行時の従動輪の回転角(ϕ_{3R}, ϕ_{3R})から 節3の速度と角速度が(1)式により求められる.ま た,各節間のキネマティクスの関係と関節の回転 角から(4),(6)式により節1,節2の速度・角速度 が求められる.

Fig. 2 Mechanical Design

$$\begin{cases} \vec{w}_{3} = d \left(\dot{\phi}_{3R} - \dot{\phi}_{3L} \right) \vec{k} / 2r \\ \vec{v}_{3} = d \left(\dot{\phi}_{3R} + \dot{\phi}_{3L} \right) \vec{i} / 2 \end{cases}$$
(1)

$$\begin{cases} \vec{w}_{2}'' = \vec{w}_{3} + A_{5}\vec{k} \,\dot{\theta}_{5} \\ \vec{v}_{2}'' = \vec{v}_{3} + \vec{w}_{3} \times \vec{b}_{6} + \vec{w}_{2}'' \times A_{5}\vec{a}_{5} \end{cases}$$
(2)

$$\vec{w}_{2}' = \vec{w}_{2}'' + A_{4}\vec{k} \dot{\theta}_{4} \vec{v}_{2}' = \vec{v}_{2}'' + \vec{w}_{2}'' \times A_{5}\vec{b}_{5} + \vec{w}_{2}' \times A_{4}\vec{a}_{4}$$
(3)

$$\vec{w}_2 = \vec{w}_2' + A_3 \vec{k} \dot{\theta}_3$$

$$\vec{v}_2 = \vec{v}_2' + \vec{w}_2' \times A_4 \vec{b}_4 + \vec{w}_2 \times A_3 \vec{a}_3$$

$$(4)$$

$$\begin{cases} \vec{w}_{1}^{\prime} = \vec{w}_{2} + A_{2}\vec{k} \,\dot{\theta}_{2} \\ \vec{v}_{1}^{\prime} = \vec{v}_{2} + \vec{w}_{2} \times A_{3}\vec{b}_{3} + \vec{w}_{1}^{\prime} \times A_{2}\vec{a}_{2} \end{cases}$$
(5)
$$\begin{cases} \vec{w}_{1} = \vec{w}_{1}^{\prime} + A_{1}\vec{k} \,\dot{\theta}_{1} \\ \vec{v}_{1} = \vec{v}_{1}^{\prime} + \vec{w}_{1}^{\prime} \times A_{2}\vec{b}_{2} + \vec{w}_{1} \times A_{1}\vec{a}_{1} \end{cases}$$
(6)

各節の運動に基づき、節1、節2の駆動輪が仮り にすべりがないとした時の理想的な回転角 $\dot{\phi}_{nominal}$ は、以下のようの求められる。

$$\begin{pmatrix} \dot{\phi}_{2Rnominal} = (-r\vec{w}_2 - \vec{j} \times \vec{v}_2)_z / d \\ \dot{\phi}_{2Lnominal} = (r\vec{w}_2 - \vec{j} \times \vec{v}_2)_z / d \end{cases}$$
(7)

$$\begin{vmatrix} \dot{\phi}_{1Rnominal} = (-r\vec{w}_1 - \vec{j} \times \vec{v}_1)_z / d \\ \dot{\phi}_{1Lnominal} = (r\vec{w}_1 - \vec{j} \times \vec{v}_1)_z / d \end{aligned}$$
(8)

実際にはそれぞれの駆動輪ですべりが生じてい るので、それぞれ計測される回転角 (ϕ_{1R}, ϕ_{1L})_{actual}, (ϕ_{2R}, ϕ_{2L})_{uctual}と (7), (8) 式で求めた角との差が すべり量を表す、

$$Slippage = \dot{\phi}_{actual} - \dot{\phi}_{nominal}$$
 (9)
なお、本論文で使用する記号の一覧を表1に示す、

d	-	wheel radius		
- T		length from center of segment to wheel		
\vec{a}_{i}, \vec{b}_{i}	•	vectors for connecting links		
- <i>i</i> ,- <i>i</i>	: coordinate transformation matrix			
$\vec{i}, \vec{j}, \vec{k}$		corresponding to joint angle θ_i		
	;	principal axes of each body-fixed		
	:	coordinate frame		

5. シミュレーションモデル

5.1 タイヤモデル

本研究では、文献¹⁾に示された方法によりタイ ヤの力学を定式化する.

タイヤを図3,4のように、本体と地面とを結ぶ 粘弾性体としてモデル化する、このモデルでは接 地点を原点としタイヤのころがり接線方向を *x* 軸, 法線方向を *y* 軸,鉛直方向を *z* 軸とする座標系を定 義する.

Fig. 3 Tire Model (1)

• すべり率の定義

接地点におけるタイヤの速度 v_x , v_y とタイヤの 回転の円周速度 v_w を用いて、タイヤのx方向およ び y方向のすべり率をそれぞれ (10), (11) 式のよ うに定義する.

$$S = \begin{cases} (\boldsymbol{v}_x - \boldsymbol{v}_w) / \boldsymbol{v}_x & (\boldsymbol{v}_x > \boldsymbol{v}_w) \\ (\boldsymbol{v}_x - \boldsymbol{v}_w) / \boldsymbol{v}_w & (\boldsymbol{v}_x < \boldsymbol{v}_w) \end{cases}$$
(10)

$$S_{\alpha} = \begin{cases} |\tan \alpha| & (\boldsymbol{v}_{x} > \boldsymbol{v}_{w}) \\ (1 - |S|)|\tan \alpha| & (\boldsymbol{v}_{x} < \boldsymbol{v}_{w}) \end{cases}$$
(11)
$$\boldsymbol{\mathcal{I}} \subset \boldsymbol{\mathcal{I}} \cup \tan \alpha = \boldsymbol{v}_{w}/\boldsymbol{v}_{x}$$

ここで、 $v_x > v_w$ のとき車体は加速され、 $v_x < v_w$ のとき車体は減速される.

Fig. 4 Tire Model (2)

タイヤは車体重量を支えることにより z方向に δ だけ変形し、x 及び y方向にそれぞれ l_x , l_y の長さ にわたって接地する、走行中は接地長の全区間が グリップしているわけではなく、一般に進行前方 ではグリップしているが、後方ではスライド(す べり摩擦)状態にある.(図 4)ここで接地長 lに対 するグリップ領域 l_a の比率を以下のように求め、 $l_n x, l_n y$ で示す.

$$l_n = l_a / l \tag{12}$$

タイヤが発生する力

タイヤが x, y方向に発生する力はそれぞれ次式 のようにモデル化できる.

$$F_{x} = \begin{cases} C_{s}|S|l_{nx}^{2} + \mu_{x}F_{z}(1 - 3l_{nx}^{2} + 2l_{nx}^{3}) \\ (|S| < S_{c}|) \\ \mu_{x}F_{z} & (|S| > S_{c}|) \end{cases}$$

$$F_{y} = \begin{cases} C_{\alpha}|S_{\alpha}|l_{ny}^{2} + \mu_{y}F_{z}(1 - 3l_{ny}^{2} + 2l_{ny}^{3}) \\ (|S_{\alpha}| < S_{\alpha c}|) \\ \mu_{y}F_{z} & (|S_{\alpha}| > S_{\alpha c}|) \end{cases}$$

$$(14)$$

なお C_s , C_a はグリップ領域におけるタイヤ剛性, μ_x , μ_y はスライド領域におけるすべり摩擦係数で ある、ここで

$$S_c = 3\mu_x F_z / C_s \tag{15}$$

$$S_{\alpha c} = 3\mu_y F_z / C_\alpha \tag{16}$$

は,限界すべり率と呼ばれ,すべり率の絶対値が これよりも大きい場合,接地部の全領域にわたっ てタイヤはスライド状態になる.

一方 z方向のタイヤ発生力は剛性及び粘性係数 をそれぞれ C_z , D_z として次式のように表される.

$$F_z = C_z \delta - D_z \dot{\delta} \tag{17}$$

5.2 ローバーのモデル

本研究ではローバーのモデルとして前述のキネ マティクスモデルを考える.

ダイナミクスシミュレーションには、本研究室で 開発した汎用多体系の定式化³⁾を用いた、地面と のコンタクトについては、各タイヤにおいて(13), (14),(17)式の力関係を用いている。

6. 走行実験

今回製作したローバーの諸元を表2に示す.

本研究では,まず雪上でローバーの走行試験を 行い,不整地走行性能を確認した.また平地上を 50 秒間走行させ、それぞれの車輪と関節の回転角 を計測し、従動輪を用いたデッドレコニングの精 度検証と駆動輪のすべり推定の実験を行った。

Fig. 5 Proto-Explorer

Table 2 Rover Specifications

Dimentions	[11111]	
Length \times Width \times Height	$90 \times 500 \times 330$	
Wheel Radius	170	
Total Weight	16.4 [kg]	
DC Motor	0.3 [kg] × 4	
Battery	0.7 [kg] × 2	

6.1 デッドレコニングによる走行軌跡

実験で得られたデッドレコニングによる走行軌 跡を図6に示す、走行終了点の絶対位置計測と比 較すると, x方向(進行方向)の誤差は1%程度 であった、しかし y方向の誤差はこれよりも大き く,走行経路が蛇行しているほど大きな誤差が生 じた.このことは左右の車輪の回転差から胴体の 回転角を求めることが難しいということを示して いる、

6.2 駆動輪のすべり

同じ実験データを用いて前述の関係式から駆動 輪のすべりを推定した。

すべり率 Sは(10)式を用いて求め,図7に示す. 軌跡の図と駆動輪のすべり率を比較すると,旋 回時,外側の車輪には負のすべりが生じている. これは(10)式より,実際のタイヤの回転速度vwが vxよりも大きいためであり,空回りが発生してい

Fig. 6 Motion Trace of the Rover (Experiment)

Fig. 7 Slip Rate of Active Wheels (Experiment)

るのが観測される、同様に、内側の車輪では正の すべりが生じている.

さらに、駆動輪のすべりを用いて図8のような制 御系を考えることができる.これは単純に速度を フィードバックすることですべりを最小化させる もので、例えば負のすべりが生じている場合は車 輪の回転速度を速くし、生のすべりが生じている 場合は遅くする、これを応用することにより、も し障害物に乗り上げて駆動輪の一つが空回りして いるとしても、ローバーの自律的な判断によりそ のような状況から抜け出すことができるなど、よ り知的な走行制御が可能になってくると考えられ る、また、すべりを最小限に抑えることによりエ ネルギーの節約にもつながり、ミッションの遂行 に有効である.

シミュレーション 7.

本シミュレーションで用いたタイヤパラメータ を表3に示す、ここでは、左右の駆動輪に適当に 速度目標値を与え、静止状態から加速していく時 のローバーの動作をシミュレーションした. 結果 より軌跡と駆動輪のすべり率を求め、図9,10に 示す.

図7,10を比較すると、シミュレーション結果の すべり率は実験結果とほぼ同じような傾向がある といえる.

Table 3Tire Pa	rameters	
x 方向のすべり摩擦係数	μ_x	0.4
y方向のすべり摩擦係数	μ_y	0.5
x 方向のタイヤ剛性係数	$C_s[{ m N/m}]$	100
y方向のタイヤ剛性係数	$C_{lpha}[{ m N/m}]$	50
z方向のタイヤ剛性係数	$C_z[{ m N/m}]$	1000
z方向のタイヤの粘性係数	$D_z[{ m Ns/m}]$	72.2

おわりに 8.

本研究では不整地踏破能力の高いローバーの走 行モデルを製作し、走行実験を行った、車輪走行 ローバーにデッド レコニング計測のための従動輪

Fig. 8 Slip Control Architecture

Fig. 9 Motion Trace of the Rover (Simulation)

Fig. 10 Slip Rate of Active Wheels (Simulation)

を設けることは、ナビケーションや走行制御にお いて有効であり、その基礎として従動輪と駆動輪 の回転を比較することにより、すべり量の計測を 行った.さらに、駆動輪のすべりを最小化するロー バーの制御系を提案した.

また,平地におけるローバーの走行ダイナミク スシミュレーションを行い,実験データとの比較 検討を行った.これにより,本研究で用いたタイ ヤのモデル化の妥当性が示された.

参考文献

- G. Gim and P. E. Nikravesh; "An Analytical Modelof Pneumatic Tyres for Vehicle Dynamic Simulations, Part1: PureSlips," J. of Vehicle Design, Vol.11, No.6, pp.589–618, 1990.
- T. Shiwa and K. Yoshida; "Navigation Data Aquisition with an Experimental Test-Bed of Planetary Exploration Rover," Int. Conf. on Field & Service Robotics, 8-10 Dec. 1997, Canberra, Australia (to appear in selected proceedings).
- 3) 吉田,藤島;衛星捕獲のダイナミクスシミュ レーション,ロボメック'98 2BI1-2, 1998.