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1. Introduction

Poppet valves are extensively used in hydraulic sys-
lemns as pressure regulating valves, e.g., reliel valves,
pilot parts of a reducing valves, check valves and car-
tridge valves because of the simplicity of the construc-
tion and the high pressure-sensilivity to valve displace-
ment. It is a familiar fact to enginecrs in this field that the
system is liable 10 be unstable and often suffers from
noisy chatter. Since the instability of the valves is a cause
of abnormal performance and a source of noise, a num-
ber of rescarchers have studied it for a long time.

Most such studies deal with the local behavior in the
victnity of steady states of the system. However, the
svstem has various kinds of non-lincaritics, e.g., flow
charactenstics of valves and orifice pressure-flow chart-
acteristics, dry friction and collision of the poppet against
the scat. Thus, the global behavior is sometimes very
different from the local one. Although the system has a
simple siniciure in appearance, the problem has rarely
been investigated because of the difficulty of amalysis
due to marked non-linearity and complexity of phe-
nomena occurring in the system.

In recent years, the situation has been drastically
changed by the development of high-speed computers.
That is. it is now possible to analyzc the dynamics of
systems with complex non-lincanity by making use of
numerical simulation, and the change of syslcin respons-
es according to variation of system parameters is easily
analvzed.

This paper outlines past studies on local stability of
hvdraulic systems including poppet valves and then
describes the conrse of studics on the mechanism of the
instability and the global behavior of poppet valve cir-
cuits on the basis of the author’s studics [17]-[21],[23].

2. Historical background

As far as T am awarc, the first discussion concerning
the stability of the poppet valve was the study by Lutz
[1], which has been quoted in "Mechanical Vibrations"
by Den Hartog {2). Lutz has dealt with the stability of a
dicscl-engine fuel-injection valve which has similar
construction to an inflow-type poppet valve as shown in
Figure 1. He has clarified that the instability of the valve
is caused by the compressibility of the working fluid.

CYLINDER

Figure 1 Diescl engine fuel injection valve

Tn the field of hydraulics, Backé and Riinnenburger
[3] have reported a detailed study on the stability of a
relief valve. They have verified the conjecture by Bickel
and Acel [4] that the valve instability is not caused by the
compressibility of working fluid because of smallness of
valve chamber volume and short pipeline length, but
rather by the interaction between the poppet motion and
other components in the circuit such as pumps and ac-
tuators as shown in Figure 2.
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Figure 2 Poppet valve circuit by Backé

Funk [5] has reported a theoretical study on the in-
{luence of valve chamber volume and pipeline length on
the stability of a poppet valve circuit shown in Figure 3,
in which the poppet is connected with a supply line
through an orifice and a plenum chamber. In the analysis,
the pipeline was treated as a lossless and distributed-
parameter element in which the compressibility of oil is
faken into consideration. He has clarified the fundamen-
tal properties affecting the local stability of the system as
foltows : (1) a long pipeline makes the system unstable,
{2) the cnitical frequency of stability coincides with that
of the fundamental vibratorv mode of the pipeline, (3)
the tower the fundamental frequency is, ie., the longer
the pipeline is. the more stable the system is. (4) a large
valve displacement and a large discharge cocfficient of
the oriflice stabilizes the system. Since the conclusions
arc qualitative, consequently, many other studies have
been attempted to complement his work.
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Figurc 3 Poppet valve circuit by Funk

[chikawa and Nakamura [6] have theoretically and
cxpenimentally investigated the effect of chamber volu-
me and pipeline length on the stability of a dircct-acting
poppet valve circuit in detail.

Kasai [7].[8] has investigated the cffect of the up-
streamr and the downstream pipeline of the poppet valve
on the stability and has derived a critical condition for
stability. Furthermore, he lias argued theoretically and
experimentally that the circuit becomes unstable due to

external periodic disturbances.

Waldling and Johnson [9], [10] have examined the
effect of distnbuted mass dynamics of the spring sus-
pending the poppet on the stability of the valve circuit.

Maeda [11]-[13] has indicated the occurrence of
transverse sclf-cxcited vibrations duc lo the unsteady
transverse flow force.

Concerning the instability due to internal flow of the
poppet, there have been studies by McCloy and McGui-
gan [14]. They have pointed out that vibrations may be
induced by the change of flow force accompanying the
change of flow patterns on the basis of Schrenk’s obser-
vation for flow patterns issuing from the poppet valve
into a confined chamber[13].

Green and Woods [16] have imply five causcs of in-
stability by the flow around (he poppet: (1) Iustability
resulting from coupled motions of the poppet with other
circuit elements. (2) Instability caused by flow transition
from laminar 1o turbulent with increasing or decreasing
flow rate accompanving poppet displacement. (3) Insta-
bility causcd by negative restoring flow force. (4} Insta-
bility caused by pressure differcnce between opening and
closing of the valve (hysteresis of flow force). (3) Vibra-
tions induced by fluctuation of supply pressure.

The instability (1) has already been stated in refer-
ence [1]-[10). As for the instability (5), we cannot infer
from the paper {16] whether the vibrations are self-
excited vibrations or a kind of forced vibration. The
instabilities (2),(3) and (4) are said to be unstable phe-
nomena caused by the flow force, but the details of the
phenomena are unclear, since Green and Woods have
shown neither the measuring results concerning the flow
force, nor the vibratory waveforms.

3. Mechanism of instability

The poppet valve circuits are classified into two 1ypi-
cal configurations, i.¢. a pilot type poppet valve circuit
and a direct-acting poppet valve circuit. The outlines are
shown in Figure 4(a) and (b).

The governing equations of the circuit are given in the
Appendix togcther with the linearized forms, the associ-
ated transfer functions and the characteristic equation.
In this scction, we consider the mechanism of the insta-
bility of the poppet valve circuit from the point of view
of mechanical energy transferred to the poppet through
the flow force [17].

From the lincarized equation (13) of poppet motion,
the following energy cquation is derived:

AF = j:' dE = —J'rr 5t + j: ritdt, (1)

where £ (=m /2 + kx%2) is the mechanical energy of
the poppet, £,=E(T)), I5,=E{T}) and T{(=7,-T}) the period
of a vibration.

AL is the incremental changg of the iechawical energy
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(a) Pilot type poppet valve circuit
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{b) Direct-acting poppet valve circuit

Figure 4 Schimatic diagrams of poppet valve circuits

for a cycle. The vibration is amplified for AE > 0 and is
attenuated for AE <D,

Here we assume that the valve displacement and the
valve chamber pressure change sinusoidally about a
sicady state as

X =X, sin @t
p. ==p, sinfl@t —g).

From Eq. (1} and Eq. (2}, we obtain the following
equatiomn.

AE = —gdwx, +7a, p,x, sing. (3)

(2)

The first term representing the energy dissipation by the
damping force. The sccond term is the work done on the
poppet by the flow force during a cycle of vibration.

Since ¢ > 0, i.e.. the chamber pressure P, inevitably
delays with respect to the valve motion, thus the second
term of Eq. (3) is always positive. If AR > 0, then the
total mechanical energy of the poppet increases for every
cycle of the vibration and conscquently the vibration is
amplified. Othenwise it decays.

There are a variety of causes of the delay of the cham-
ber pressure ¢ depending on circuit configuration.  For
examnple, if the compressibility of oil in the valve cham-
ber is not ignored in the circuit shown in Figure 4(a), the
delay of chamber pressure is given by ¢= tan'(Ta) > 0
for L = 0 from Eq. (17} in Appendix, Thus, the second
teom of Eq. (3) becomes always positive. This implies
that the delav due to the compressibility of oil may be a
factor of instability. The transmission delay due to a fong
pipeline can also be a factor of instability.

The damping force is so small that the valve is apt to
vibrate excesstvely. unless it is actively intensified,. Tlus
is the essential reason why the poppet valve circuit is
liable to becomne unstable. Even if the cffect of the com-
pressibility of oil can be ignored. the valve chamber
pressure often delays with respect 1o the poppet dis-
placement as the result of the interaction between the
valve motion and other system components, e.g., pumps,
actuators and other control valves. This sort of delay also
causcs instability.

On the other hand, il the system has negative damping,
i.e., § < 0. it becomes unstable. The causes of poppet
valve instability arc summarized as follows:

(a) delay due to compressibility of the working fluid,

(b) high-order delay due to the interaction by other

components,

(c) negative damping force.

4. Local stability

Prior to describing the global nature of the system
shown in Figure 4, the local stabilily will be mentioned
briefly.

Figure 5 shows stability maps calculated from the
charactetistic equation (15); they are plotted using supply
pressure P, and valve displacement .X. Figure 5(a) shows
the map for a pilot type circuit having no pipeline 2=0.
The system is stable for the small valve displacement,
whereas it becomes unstable for the relatively large valve
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Figure 5 Stability map of poppet valve circuits



displacement. In this case, the unstable vibration has the
poppet valve frequency f, indicated wm Eq.(4). On the
othier hand, for a direct-acting poppet valve circuit £ #0.
the small valve displaccment region becomes unstable as
scen in Figure 3(b) and the unstable vibration has the

pipeline [requency ;.
:,(k_,,:’m/lﬂ', N =,I‘BAL/,9V¢L/2;I #

Figure G(a) shows the stability of a pilot type poppet
valve circuit having the pipeline with viscous resistance
and the partly enlarged inap is shown in Figure 6(b).
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Figure 7 Natural frequencis of pilot type circuit

As scen in Figure 6, the instability region consists of 1li¢
valve mode instability and the pipeline mode instability.
As increasing P, along the static valve displacement
curve shown by a dashed line, the systcm becomes
unstabic i the interval AB and the interval CD ; 1he
former corresponds to the pipeline mode and the latter to
the valve mode as seen in Figure 7 which shows the
linear frequencics calculated from the characteristic
equation (15). Each curve coincides with the respective
natural frequencies of Eq. (4) at the valve cracking point
P=F.

The symbols & and @ in Figure 7 indicate the sclf-
excited frequencies of the pipeline and the valve modc
calculated by numerical simulation respectively. From
the energy transfer equation (3), it is inferred that the
valve mode instability is caused by the high pressure
sensitivity of the pilot type valve |9 P/5X], as seen in
Figure 8 and Eq. (5), which is derived substituting Eq.
(17) in Appendix into Eq. (3).

P

f _Te (5)
X1+ Ty’

On the other hand, it is reasoned that the pipeline
mode instability is owing to the amplification of p, by
the resonance of the pipeline mode,
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Figure 8 Static characteristics of pilot poppet valve

5.Nonlinear behavior

The poppet valve circuits shown in Figure 4 frequently
exhibit strange behaviors, i.e., disagreement of thcorcti-
cal results with experimental ones and occurrcnce of
chaotic vibrations which can be unexpected from the
local nature of the system. However, no study has been
performed to clarify the phenomena. The resent devel-
opment of numerical simulation exhibits the power to
analyze such a complex system. Here the author will
describe several global behaviors of the poppet valve
circuit on the basis of his studies [17]-[21}, [23].

5.1 Hard self-excited vibration

Figure 9 shows a result of numerical simulation car-
ricd out to examine the influence of disturbances on the
system behavior. The response for the velocity distur-
bance smaller than a critical value converges to a stable
steady state. On the other hand, the responsc for the
larger disturbance grows into a sclf-cxcited vibration.



This sort of self-excited vibrations. that occur at stable
sicady states due to large disturbances, is called “hard
self-excitation™ {17]. which corresponds to a situation
that a stable limit cyele encircles an unstable limit cycle,
i which a stable equilibrivm point is included [22]. By
taking this phenomenon into consideration, the sell-
excited region is considerably widened in comparison
with the locally unstable region as shown in Figure 10.
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Figurc 9 Responses for velocity disturbances
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Figure 11  Amplitude of self-excited vibration

The most noticeable characteristics of the hard self-
excitation is that once the self-excited vibration occurs,
the vibration does not stop until a far lower supply pres-
surc than the cracking pressure is reached. Figure 1
shiows the change of amplitude of vibrations with supply
pressure P,, where the cracking pressure 7, (=2.0 MPa)
is indicated by a chain line and the hatched areas indicate
locally unstable regions. As seen in Figure 11, the sclf-
excited vibration occurs also in the stable region and
continues until £=1.1 MPa,

It has been pointed out that the self-excited vibration
of the valve mode is caused by asymmetry of the static
characterstics, P, vs. X' [19].

The symbols @ in Figure 7 shows another type of
“hard self-excitation” of the pipeline mode, which occurs
due to large disturbances beyond a critical value even for
a supply pressure lower than the cracking pressure P,
although the poppet stably rests on the valve seat.

Figure 12 shows the responses for slightly different
initial velocitics under the operating condition indicated
by the symbol ¥ in Figure 6(b). It is conjectured to be
causcd by a shift of the cquivalent static state into the
unstable region in Figure 6(b} ; the center of the poppet's
positional vibration locates at some distance from the
vaive scat due to the collision of the poppet against the
seat.
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5.2 Chaotic vibrations

Chactic vibrations arc somctimes observed in the pop-
pet valve circuits. This section describes the chaotic
vibrations induced in the circuit {19], [20],[22].

3.2.1 Feigenbaum chaos

Figure 12 is an amplitude diagram on which all the
maximum points of vibratory waveforms of poppet
displacement are plotted against supply pressure £,
The dashed curve represents the static valve lift. The
points A and B correspond to those of Figure 6(b) ; they
indicate the critical points of stability. Other static points



except the interval AB in the figure are locally stable as
described previously.

The self-cxcited vibration undergoes a scries of pe-
ricd-doubling bifurcations with increasing P, leading to
chaotic vibrations. Figure 13 shows the waveform, the
power spectrum and the phase plane trajectory of a chaos
occurring in this region. With further increase in £,. a
period-3 window appears. At higher 7, still the vibration
cnters the second chaolic regime. The chaolic vibration
disappears around 7=3.85 MPa. The vibration goes
through period-2 and period-3 and returns to period-1
vibration around the cracking pressure 2 =4.0 MPa.
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It can be proved that the period-doubling bifurcation
sequence in Figure 13 obeys the typical Feigenbaum's
route [24], and Feigenbaum numbcer 46692016+ - -can be
derived from the period-doubling bilurcation diagram,
5.2.2 Chaos in direct-acting circuit

The stability of the dircct-acting poppet valve is con-
siderably degraded by the direct interaction between the
motion of the poppet valve and the oil column in the
pipcline and various kinds of chaotic vibrations are
observed in the circuit [22].

Figurc 16 shows the natural frequencies of the system
and the frequencies of scli-excited vibrations calculated
by numerical simulation. The curves [/}, 5], [A]--
represent the pipeline mode frequencies which are the
imaginary parts of the characteristic roots. The curve [ff]
corresponds to the valve mode vibration, which is always
stable regardless of pipeline length. The stability of the
system is indicated by {wo horizontal broken lines,
between which every mode becomes unstable [23].

In the system, several modes become unstable at the
same time for the samc operating condition. With in-
creasing pipeline length, the number of unstable vibrato-
ry modes increases. However, not all the unstable modcs
are necessarily excited, but only a few modes selectively
occur. The vibrations occurring in the system are classi-
fied and indicated by symbols ©-@ in Figure 16.

It is ¢rucial to note that chaotic vibrations shown by
the svinbols A and ¢ occur in the region indicated by A,
B, B’ and C, although the mathematical model used here
is deterministic and does not include any statistical
factors. These chaotic vibrations obtained by numerical
simulation have been confirmed to be valid qualifatively
by an expeniment. [21}].

ARV IRTARTARYS Pipline made
TV 0 N N N

a 2 3 8
Pipeline length L m

Figpure 16 Modal frequencies direct-acting poppet
valve circuit and frequencies of self-excited vibrations
(O=period-one, @=period-two, []=period-three,
O=period-four, V=period-five, M=pcriod-six,
O =period-eight, A=almost periodic, /\=chaotic,
¢ =intermittent chaos, ‘©@=damped vibration. Period-
n means 1/n sub-harmonics with the frequency f//n)



In the region A, onlv a mode [/]] is unstable and the
scli-excited vibration transforms into Feigenbaum-type
chaotic vibration through penod-doubling bifurcation
with increasing L as a parameter, This chaotic vibration
15 sinuilar 1o that indicated in Figures 13-15.

[nn the region B, the three modes [f)], [/] and [/;] are
unstable and the almest periodic vibration composed of
1wo unstable modes [f;] and [f;] changes into Lorenz-
tvpe chaotic vibration. In region B', (e same sort of
chaotic vibration as in the region B occurs.

In the region C. a vibration with beating waveform
occurs. The power spectrum indicates side bands on both
sides of peaks of the mode [/;] and its higher modes. The
vibration is regarded as an intermittent chaos.

Of various self-excited vibrations, simple periodic vi-
brations produce sound close to purc tones, bui almost
periodic and chaotic vibrations produce unpleasant noisy
tones. Thus, prevention of these vibrations is important
also {rom the vigwpoint of noise reduction.

6. Conclusions

Studies on the local instability of poppet valve circuits
have been reviewed and the global behavior has been
described on the basis of the author's studies by numeri-
cal simulatton. The global behavior of the poppet valve
circuits is analyzed and occurrence of hard self-excited
vibrations and various chaotic vibrations are indicated.
Since the poppet valve motion is affected by various
non-lincarities. complexity of the dynamic behavior is
greater than was at first expected.
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Appendix

Governing equations
The governing cquations for the circuits shown in
Figure 4 are dertved as follows;
(a) Pilot type poppet valve circuit
The equation of motion of the poppet is
d*X
dar’
where the flow force acting on the poppet is expressed as

nl

+5%+k(,¥ +X,)=F (6}

F=APP{1—4cpisin2a . (7)
d?
The relation between the velocitics before and after a
collision of the poppet against the valve seat is
Xy =-eX (), (8)
where ¢ is the coefficient of restitution for the poppet o
the valve seat and ¢~ and ¢* arc times just before and after
collision, respectively.

The continuity equation of the valve chamber is
Va0 o 9)
god -

The equation of motion of the fluid column in the

pipeline by a lumped parameter approximation is

ﬁEdga =PS _Pu . (10)
1
L

The flow characteristic of the poppet valve is

O, =sc,md, Xsina J‘—%Pc . (11)
P

puiting £,=0, when P.<0,
The flow characteristic of the orifice is

0, =c,d, |[2\p, - p|sgn(p, Py . (1D
2

() Direct-acting poppet valve circuit

Putting the discharge coefficient of the orifice ¢,—<
in Eq. (12) and .=4,L in Eq. (9), we obtain the govern-
ing cquations for a direct-acting poppet valve circuit.

Linearized equations and transfer

functions
We obtain the following linearized equations from Eqgs.
{6)-(12}) at a certain steady state.
mé+dx+k x=a,p,

. . 13
Cp.=q,-q.. 14,=-p, (13)

g, =cx+ep., 4,=c(p,-p,)
where C(=V/f) is the valve chamber capacitance,
I (=(pL)y4;) the pipeline inertance, c¢,=(3 O/ #X),,
cHA0JIPY (30 PPy, h=k-(2 12X,
a,=[a /3 P.], and the subscript 0 means a stcady state.

From Eq. (13), the following transfer functions are
derived.

X5 _a, !
Pis) ms,+2%,m,5+0) {14)
Py ¢, {e,s+1)

X)) o Cl (5% +2¢,0,5 +w0)
The characternistic equation of the system is
5 +AS +As v 45+ 4 =0 (15)
where
A =il + P j20),|a, /m,
A =206 + k0.0 +a.c, im0,
A =0+ +(2%,m,)2,@,), (16)
A=lkw+ 0w,
& ={t+e, je fiCD
25,0,=8m, A, =c[C+ldc)
(o2/20) e e+
For 2=0, or /=0, the P/X in Eq. (14) is reduced to
L K (17)
X5 Ts+l
where K=c/(¢c,+c,)=| &P/ 3 X|; and T=Cl{e,+c,) .

o =k m,

Nomenclature
A; : cross-sectional arca of pipeline
: opening area of orifice
. cross-sectional area of valve seat
. discharge coefTicient of orifice
. discharge coefficient of poppet valve
- diameter of poppet valve seat
: axial flow force acting on poppet
; perturbation of flow force
- frequency of pipeline mode
: frequency of poppet valve mode
: stiffness of poppet spring
: length of pipeline
: poppet mass
: pressure in valve chamber
: upstrcam pressure of orifice
: supply pressure
: perturbation of chamber pressure
- flow rate through poppet valve
- flow rate through orifice
: perturbation of valve flow
. perturbation of orifice flow
: volume of valve plenum chamber
: valve lift
: static valve 1ift
- perturbation of valve lift
: initially compressed length of suspension spring
- half angle of poppet
: bulk modulus of working fluid (oil)
: viscous damping coefficient
. density of working fluid (oil)
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