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1. Introduction

The fact is that virtually all physical plants,
such as aircraft, spacecraft, automobile or robot,
are nonlinear in nature, and all control systems are
nonlinear to a certain extent. Thus, the topic of
nonlinear control design for the output tracking, a
controller which forces the plant output to track
a time-varying trajectory, has attracted particular
attention.

At the eighties, generalizations of pole place-
ment and observer design techniques 1) 1) for non-
linear systems were obtained by using differential
geometric nonlinear theory which is a procedure
to construct the linearizing coordinates. More re-
cently, we were confronted with more realistic prob-
lems that were caused by various uncertainties about
either plants or disturbances. Adaptive versions for

nonlinear systems were announced from the mid-

1980’s 8) 19) and have been recently expanded in
some works 7) 4. On the other hand, Isidori,
Khalil, Marino and Tomeli have studied theories of
robust versions for nonlinear systems 9) 3) 5) 8),
However, the nonlinear control algorithms stud-
ied in the above paragraph were not available to a
class of nonlinear systems affected by both constant
uncertamn parameters, i.e. unknown constant pa-
rameters, and unmodeled dynamics. To solve such
a complex situation, in this paper, we shall present
two robust adaptive nonlinear control schemes for
uncertain nonlinear systems with both constant un-
certain parameters and unmodeled dynamics, via
indirect and direct input-output feedback lineariza-
tions, respectively. The control schemes to be de-
veloped are designed and analyzed on the following
assumptions; 1) the nonlinear vector fields express-
ing system properties are smooth, 2} the nonlinear

functions are given linearly with respect to the un-
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known constant parameters and the control input,
3) the full-state measurable condition is satisfied,
and 4) the nonlinear systems have a well-defined

relative degree.

2. Robust Adaptive Nonlinear
Output Tracking

Let us now consider S750 nonlinear systems

r =

F(x,0) + gz, 0)u, € R, ueR,0 R

y h(z), ye R (1)

where x is the state, u is the control input, & is
the unknown constant parameters, y is the output,
h: " = R is the C™ output function, and f,
g are two C* vector fields with g(z,8) # 0. We
assume that the unknown constant parameters @
are restricted to appearing linearly and the vector

field f is affected by the unmoedeled dynamics A f:
r

f(2,0) = _8:fi(z) + Af(2) (2)
=1

with C™ nonlinear functions f;, ¢; : B* =+ R, i =
L,---,p, and C% vector field Af. Our objective
is the design of nonlinear feedback control schemes
to force the output y to approximately track the

reference trajectory y,,(t) satisfying
N £ ey, i=0,1,- -7 (3)

where ¢, > 0 and r is the relative degree to be
introduced in a short time. For this, the control law
and parameter update law must be designed on a
local domain of both the state z and the parameter
estimates @ of 8, together with the robustness of
all the closed-loop signals including  which may
be drifted to infinity due to Af. Let f(z,8) be

P_10ifi(x) in (2) and z. be an equilibrium point
of (1). Moreover, we assume that Af(z.) = 0 and

hiz,) = 0 at z,.

2.1 Robust adaptive output tracking
with indirect input-output feed-
back linearization

Here, we assume that the input vector field g
is not affected by the unknown parameters 6, i.e.
g(x,0) = g(z). With this assumption, the first ro-
bust adaptive nonlinear controller is designed sep-
arately with robust adaptive law and input-output
feedback linearization by state feedback. For this
control scheme, let us first illustrate the robust
adaptive law to identify #. The explanation can

be evolved as the transformed form for (1):

(s+ Dzl = 8ifi(x)+Afi +gi(z)u

4z, 1£€ign (4)

where 0; is the unknown constant parameter pa-
rameterized hinearly with the i —th nonlinear func-
tion f;. In (4), we can define the following linear
expression with the strictly proper SPR transfer

function W(s) = —

777 the time invariant parame-

ter vector 87 = (6; 0 1), the state variable vector
w; = (fi(z) 0 z;)T and the piecewise continuous

signal input z,; = g;(2) w
2= W0 Twi+ Afi+20], 1Sin . (B)
From (5), the state estimate can be constructed as
-T .
=W witzal, 1Sign, (6)
Then, the estimatton error ¢; = & — z; is got from

—ei + (#fwi — Afi)

€; =

6 = e,1<i<n (7)

with the paramcter error ¢; = 5; — éf. towever,
since it is nol assumed that the unmodeled dy-
namics Af; 18 bounded 1n a compact set, we can
not identify the state estimate Z; and the param-

eter estimate 5_4 by only (7). Hence, to design
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an adaptive law which is robust with respect to
Af;, we shall present the following normalized er-
ror dynamics with the normalizing signal m; such

as m? = 1+ |l |2

& = —&+(d]@—Af)

€ e, 1£isn (8)

where §; = g; = =, ; = i A__f,=éhEE°°

m; = m;! = m;

We have to construct an appropriate Lyapunov
type function for designing a robust adaptive law

of 5‘ Let us now consider the Lyapunov function
1. :
Vi(¢i, &) = 5(6?+¢T¢;), 1<ign. (9)

The following theorem introduces one way to avoid

the parameter drift phenomenon and establish bound-

edness in the presence of Af; (or Af).

Theorem 1 If we select a robust adaptive law de-

fined as the differential equations

b = Oi=—&wi—wh, 1Si<n (10)
with the leakage term w;(t) 2 0, we establish V;, &

(ore;), ¢, & (or€;) € Lo

Proof: Differentiating (9} with respect to time t
along the solution of (8) and using the above equa-

tion (10), we have

Vi(¢i, &) =

= —@-GAf, ~wiglh, 1<i<n

~& 4 Gl — GAS; + ¢ b

£ —& 4+ |&l|Af;] - widT o (11)

where the leakage term w;(t) is to be chosen so that
for V; = Vi and some constant Vg; > 0, Vi < 0.
This property of V; implies that V;, & (or equiva-
lently, €;), & (or equivalently, ¢;), ¢; € L. B

If the unknown constant parameters # in (1) are
estimated by using (10), we can see (1) as a class

of nonlinear plants with the knowable parameters

g at time {. However, since (1) is affected by Af,
the feedback linearization procedure must be con-
sidered with Af. To overcome the problem, with
the definition f(z,8) = ey d; fi(z) and Frobe-
nius’s theorem, we can define the following relative

degree and the local diffeomorphism which are not

dependent on A f: in Us(0) x U.(z.),

Lg{r}L}(zlé)h(z) = 0,0£i<r~-2
LQ'(J:]L}(_;’@)‘F"(I) # 0 (12)
and
€n = (hiz), L’—‘fg,h(m).
#1(=9) 2 (z.0)
Mt s M) - (13)

Theorem 2 If (12) and {13) are assumed, (1) is

input-output feedback linearizable into

£ = Al+ B+ Ad(z,0,Af(z))
T} = q(f:’?)

y = & (14)

where (A1, By) is in Brunousky controller form,

A‘i’(x’é"&f) = [A'i’l:"'yA‘i’*r]T
Ap(€,8,Af) = LagLilyhiz), k=1, r
1

u = m[v"B(EWH (1)
with

Alg.n) = Lg(z)L;‘(_;,é)h(x)’ B(&,m) = L, 4hlz) -

Proof: Let us differentiate y with respect Lo time #:
& = Ly, 5 M=) + Loyh(z)u+ Lagh(z) .
Since Lyizyh(x) = 0in {12), we have

&:1 = Lf(z,é)h("’) + L,_Uh(z)
— e N——

£a(z.) Ady(x,6,41)
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In the second step with the knowable value ¢ at

time £,
& = LY, shz) +Lom Ly, 5yh(2)u
N—.  —
Eﬁ(zsé)
+LAfo(£I§)h(Z') .
\_.._v_.._/

Agalz,b,Af)
Since Lg{z)Lf(z’,-)h(x) is again zerc for all z in
Us{9) x U, (z,), we shall differentiate again and

again until the integer »

£ = L}(zlé)h(znLg(,)L;.(;‘j}h(x)u

r—1
+L¢;Lﬂz,§)h(t) .
With the above definitions A, B and Ag,, the nor-

mal dynamics (14) can be got. O

Remark 1 With the assumption Af(z.) = 0 and

the knowable value § at time t, it is obvious that
A(ze, 0, Af(x.)) = 0 and ||Ag(z.6,A0)]| < x|l
for &> 0.

Using the pole placement control input

v o= y,(,',') + O‘r—l(yr(;—l) - Er‘) + o+ Qﬂ(ym
~£1) (16)
with Hurwitz polynomial coefficients atj, i = 0, -+ -, r—

1, the robust output tracking can be approximately

achieved. If we define the tracking error e, by
ey = YV gD =1, (17)

the feedback control laws (15) and (16) lead to the

closed-loop system

&y = Aey+ Ad(z,8,AF)

1 gley + Gm, 1) (18)

where A is an exponentially stable r x r matrix
in the bottom companion form 29, and §, =
(Y By -, g_l))T with the boundedness }|g,|] £

€y 1N (3).

Remark 2 Since the above dynamics can be de-
rived from the full state variables x and the desired
trajectory vector fiy,, it is natural thal the feedback
control laws (15) and (16) become a state-feedback

control scheme. »

Assuming that the zero dynamics ¢(0, 9) in (14)
is locally exponentially minimum phase, the fol-
lowing theorem indicates that the feedback con-
trol laws (15) and {16) make the tracking error
Y(t) — ym (1) bounded.

Theorem 3 If the nonlinear system (14) has the
relafive degree r, tls zero dynamics is locally asymp-
totically stable and the boundary condition (3} of
Ym &8 salisfied, the feedback control laws (15) and
(16) lead to

Jim (1) = gm@I] < e, (19)

and there exists a posilive number ¢, such that

Ho(e)ll £ e . (20)

Proof: To show that e, remains bounded, let us
now consider the following Lyapunov function for

(18):
Viey,n) = eyPey+uVa(n)  (21)

where u > 0 is a constant to be determined and
P > 0 is such that ATP 4+ PA = —I. The time
derivative of V along the trajectories of (18) is

equivalent to

- , Vs .
vV o= 2cg'Pey+u-a—;r)

oV
= —|leyll® + 2¢] PAG + ugf[q(ﬂ, n)
+gley + m,m ~ ¢(0,9)]
~|lel|? — pks)|n||?

+ukalgl|nll(|]el} + €y..) - (22)
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Here, it is natural that due to the local exponential
stability of the zero dynamics, the converse Lya-

punov theorem 9) implies

kol £ Va(n) < kailnl|?
r— < —_
590 £ —kllnll
ov.
1l < allal (23)

for some positive constants ky, ko, k3, kg, and q is

a locally Lipschitz vector function, i.e.,

llg(ey + Tm, ) — a0, )1 < L(lleyll + €y,)  (24)

with a Lipschitz constant l;. Hence, using that

|Ad|] £ k||z]| and ||P|} £ Amaz, we have

Vo< —lleyll® + slley 1Pl = pkallnl?
Fukalgnll(lley [l + €y.0)
< iyl + ®AmazllegHllell — pks|lnl*

+iekalg|nlllley ] + €y..) - (25)

From (3) and (17), it is given that

el < el + lal)
< Lllleyll+ g+ lll) . (26
Then,
VoS eyl + mhmastelleg (el + ., + il
—skallnl? + ksl iyl + )
< ~(5llegll~ RAmaste I + (KAmate Il
~(glleall = Pmastoyn)? + (Shmasts )65,
—uks(GIl — Eelatyn)? + (ki
~(5 = Whmastelley | = Jukslnl?
< _(d

“(E - "“'-'\maxlr)n‘es.'”2

3
"(Z#ki’a ~ (FAmazlz ) )0l + [(kAmasts)?

o (kale)lS, (27)

k3
Defining that A . £ E‘l‘_ and p 2 4(’;)\2::!,)= ,

. 1 1
vV £ —leeynz—§pk3||n||“+[(mma,z,)2

[J. '
+E(k4lq)2]£:,m . (28}

It is obtained that {|e,|| and ||n}] are bounded since

V < 0 whenever llegy |l or [|nll is large. O

The robust adaptive control scheme with indi-
rect feedback hinearization dealt above can be sim-

ply illustrated with the block diagram in Figure 1.

Uncertain Plang

Nonlinsar
System
withg

—mad

Adjustment
Mechanism
()

Lremeedencam mammnn

Robust

Law

o LLE LT TLTY

-----------------------

{ Feedback Linearization Part |

Fig. 1
rect feedback linearization

Robust adaptive output tracking for indi-

2.2 Robust adaptive output tracking
with direct input-output feedback
linearization

When the input vector field g is dependent on
the unknown constant parameters 8, i.e. g{x,0) =
S F_,t0igi(2), @ can not be estimated indirectly as
the previous method. Thus, to solve the estima-
tion problem, we here replace the state variables
€ with their estimates £ by replacing the unknown
constant parameters ¢ appearing in £ by their es-
timates 6. Using g, £ and Frobenius’s theorem, let
us define the following relative degree and the local

diffeomorphism for (1) in Us(8) x U(ze):

LyeiyLipayh(@) = 0,08i<r—2



Lyeyliilohl®) # 0 (29)

and
- - s ri—1 L .
(ﬁ! n) - (&l - Lf‘(z’a‘)h’(x)! 1= 1! ,T,
ﬁg(r,ﬂ-)
nr-i-l:"'snﬂ') ' (30)

respectively. Assuming Af(z.) = 0 and defining
f(z,0) = YF_ 8 fi(x), the normal dynamics can

be summarized by the following theorem.

Theorem 4 If there exists a region Us(6) x Ue(z,)
satisfying (29) and (30), (1} is input-oulput feed-

back linearizable into

E = A,£+B,v+W¢+M§+A¢(x,é,Af(z))
7 = q(€n)
v = & (31)

where (Ay, By) is in Brunousky controller form, ® =

P-4, M= 5—5,
W = [wla”'aw"]T
P
wi(z,0)® = Z(ﬂ —8; Ly x)L'_ h(z}},
i=1
i=1--,r—1
r
w,.(:c,u,G)'I‘ = Z(e —G )[LfJ(E)L_{( ﬂjh(m)
i=1
+uLgJ(a:)Lf( ) (1’)]
Ad(z,8,Af) = [Adr,--, Ag]”
A¢k($1é1A.f) = L&fo( g)h(m) = 1,"‘,1‘
1 -
= = -B . 32
U A({,n)[v (€:9)] (32)
with
A(f:’?) = (xﬂ)Lr- h( )

Bn) = Ly, ;h) .

Proof: Rewriting (1) into

f(z,8) + g(z,0)u + f(z,6)
+y(xré)u - f(z!é)

r =

—g(z,é)u

and using the assumption (29), the following result

18 obtained by differentiating y with respect to time

t:
. L4 R
€ = L ahtx)+D (6; — &MLy h(z)]
——— =
£2
+ Las@h(z) . (33)
e et
Ady

In the next step, since #(f) is the time function, £,
is dependent on not only the unmodeled dynamics
Af but also the time function §:

£, = L'—;( a)h(:c)—}-z = )Ly Lo dy
S — ]

£
9
M)+ 220+ Lasin Ljephls) - (34)
ﬁ;’z

After continuing this differentiation operation up

to r, we can obtain from L ., s)L}( 19) (z) # 0 1in

(29) that

: - r r—1
&r - L!(mg ($)+Lg(z-9_)Lf( gh{z)

+§: (85 = 0)[L g0 L gy ()

Jj=1

% ;
tul, (z-)I-’f( a)h(;c)]-l- 9
+LAI(,;)L h(.":) (35)
A¢r
With the definitions A = L, 5 L%} 51 (2), B =

L}(m l‘;]h{r] and the input transformation (32), we

can obtain the normal dynamics (31). O

Remark 3 It is noted that unlike (1) affected by
only Af, (31) is dependent on both § and Af.
Since Af does not affect the determination of (30),
it is natural that the zero dynamics g(0,1n) in (31)
do not depend on only § but also Af. If there
exist lwo positive constants K, and k4 such that
211 € 1léll and [|A(z,6, AD)|| £ Kol for ali
0 € Us(9),

A6(z,0, Af)| £ w2llzl] £ mamall€ll . (36)



Since £ is the unobservable variables with 4, let us

now estimate £ by the state observer dynamics with

£(0) = £(0):
£= A+ Bio+ MO+ A€ — ) (37)

where A is the bottom companion matrix with the
coeflicients o, i = 0,:++,r — 1 chosen above.

This implies that we can get the error dynamics
s=As — W — A (38)

in which s = £ - é However, from the boundary
condition in (36), the stability of (38} can not be
previously decided with the exception of A¢. Thus,
we shall present the following normalized dynamics
for (38) with the normalizing signal m? = 1+ |J€|
of £:

§=As—dW - Ad (39)

where § = &, W= —‘r%, Ad = -‘%?. To design a
robust adaptive law satisfying the stability of the
closed-loop system with respect to A¢g, the follow-
ing Lyapunov function is here used:

sTPs ot '9
V(@) = 323+ > (40)

Theorem 5 If the robust adaptive law
f=-QWTPs-QLé (41)

where P = PT > () with ||P)| £ Amae, without loss
of generdlity, to the Lyapunov equation AT P +
P A= -1, Q=QF >0 is the adaptive gain ma-
triz of dimension p, and L is the leakage matrix
which is constructed by the diagonal scalar signals
w;(t) = »;)|3|| with the design constantsv; > 0, i =
1,---,p, is used for (39), all the states in (38) and

{89) become approzimately stable.

Proof: Using the leakage matrix L with

wi(t) =wlldll, i=1,---,p

where 1; > 0, the time derivative of V' (3,®) along

the trajectory of (39) is given by
V = fTpri+eTa'e
= négTs—gTPW‘b— & PA¢+ 0TQ L.

| . _ - _ -
€ —HEI + llsiAmas lAGH] + [V IIlis)|876

178N

1 -
= UAlIABI — 2Amaz | A8]1 + [lv||#7 @

~[ivli676)

where the last inequality is obtained by using $T¢ <
—%(I'*Td) + %HTB. This implies that for V 2 ¥ =
T (AI8T 0+ 20 ma: [1A0]]), V £ 0, ie., 8,6, 5 (or
) €Ly, O

Remark 4 The basic concept behind this choice of
w;(t) #s that since in the ideal case Af = 0, § is
guaranteed to converge to zero, the leakage term will
go to zero with 5. Therefore, the ideal properties of
the robust adaptive law (41) when Af = O will not
be affected by the leakage.

Then, the robust output tracking can be derived

by using
v=yl+ Qr—l(y,(qr:_l) —&)+ -+ aolym —51)

by assuming that the zero dynamics ¢(0,7) is lo-
cally exponentially stable. The robust adaptive
output tracking, ie., e; — B (0), is analyzed as
(i-1)

follows. Letting e; = & — ym 7, i =1, -+, 7, we

have the following tracking error dynamics
é:Ae+W¢>+M§+A¢. (42)

Defining the total error r = ¢ + s or equivalently,
rio= & — y,(:;"]), i=1,--,%, from (39) and (40),
N PR YT

Ar— MQWIPs — MQLO  (43)

with § € L. [t seems that (42) is a linear time-

varying filter with the bounded input 2, the small
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perturbation ¥, and the internal dynamics 7 =
q(é,n). We define e as the output of the follow-
ing asymptotically stable linear filter with stable

internal dynamics

i = Ar— MOQWIPsi— MQLS
7 = gfé,n)
e = r—s. (44)

Finally, the stability of the closed-loop system (44)

is found by considering the following Lyapunov func-

tion for the differential equations (39) and (43):
-

QPr + puy () (45)

V{rn) = -

where g > 0 is a constant to be determined, P > 0
is such that ATP+PA= —J and myisa Lyapunov
function for the zero dynamics 5 = ¢(0,n). The
rest of this output tracking analysis is similar to
the proof of Theorem 3.

The robust adaptive control scheme discussed
in this subsection can be also illustrated with the

following block diagram.

Hurwitz

e Nonlinear
PPolynomial

System
(Ftxai,2x8)]

Caclfivients
{Gyt. .. a0]

v
asevankbrrrawruns

[ Fesdback Lingarization Part ]

Fig. 2 Robust adaptive cutput tracking for direct
feedback linearization

3. Simulations and Results

To show performance of two nonlinear feedback
control schemes presented, we shall consider the

single-link rigid robot rotating on a vertical plane

asmmEas s as s

S S

¢ [ . the inertia of link
e m : the mass of link
¢ [ : the length of link
¢ gg : the gravity constant

¢ ¢t : the torque input

Fig. 3  Single-link rigid robot
modeled by
2'31 = T2
. 1
Iy = f)cos(z:l)+—fu+.&f
¥y = T1=¢ (46)
where ¢ = —ﬂg-‘,""'—‘ is the unknown constant pa-

rameter given by the true value 1 and Af is the
unmodeled dynamics caused by the parameter os-
cillation Af = 0.3 cos(300t) cos(z1). The objective
of control is 1o make the output y track the desired

position
T T, %
m(t) = — ~ & -
Ym(t) 1 sin(t 2) + 1 (47)
which is specified by the motion planning system.

3.1 Robust adaptive control (1)

Let us now start with the first robust adaptive
nonlinear control scheme. The following terms in-

dicate the state estimator, the parameter estimator

-



and the Lyapunov function for (46), respectively,

By = —(&— 22) + Bcos(zy)

| +%u (48)

b = —erycos(e) — llessllf (49)
Vieewd) = glel, +4) (50)

where ey, = 22 —29,y = 0.3, ¢ = g—o. According
to the design procedures in Subsection 2.1, we can

have the following normal dynamics for (46):

&6 = I3

§a=12(z 8)

(eos(@) + (1) u+ A
Ay

& =
B(x,é) A(I,é)
y = T (51)

El :31(5,9‘]

1 .
= A(x,éj(v-—B(.’ﬂ,a)) .

Then, using the pole placement control input v =
tm + 2(Um — £2) + 2{ym — &1), the output tracking
may be approximately established. The parameter
estimate §(t) converges to a bounded range in Fig-
ure 4, and Figure 5 indicates the desired result of

the output tracking.

Fig. 4 System responses (1) - 8(t), @

3.2 Robust adaptive control (2)

We shall now use the second control method.

Since # can not be separately estimated, the cor-

. i
E ] »a 40 “n 50

Fig. 5  System responses (2) - y(t}, ym(2)

troller may be derived from the normal dynamics

o= & y= & (52)
£2=3a(z,8) £1=21(x,8)

A - 1 -

& = (Bcos{zy))+ (?) u+ (8 —8)cos(z;) + Af
— v

B(z.6) )i(:r,é] as

U = = ! —(v — B(z,0))

A(z,8)

It is clear that the normal form (52) has the unob-
servable siate variables £, and £a. Thus, defining
£ as the state estimate and cancelling A¢ in (52),
the following state observer is considered to esti-

mate the unobservable dynamics (52):
E+(&—-&)=6
vt (206 - &) — 26— £3)] (53)

512

§2 =
with the robust adaptive law
0 = —s5cos{zy) — ¥||s2|l0 (54)

where 55 = €3 — £, ¥ = 0.8. Since Ag = Af €
L, the normalizing signal is not considered here.
The output tracking is finally achieved by using
v = G + 2dm — E2) + 2(ym — &,). Then, the time
responses of (54) and the output tracking are shown

in Figure 6 and Figure 7, respectively.

4. Conclusions and Prospects

In this paper, we introduced two robust adap-

tive nonlinear control schemes for SIS0 nonlinear
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wplude

Fig. 7 System responses (2) - y(t}, ym(¢)

systems in the presence of both unknown constant
parameters and unmodeled dynamics. Then, the
main contributions of this paper could be summa-
rized as shown below. First, it was noted that all
the robust adaptive laws developed in this paper
did not lead to any overparameterization for pa-
rameter identification. Second, it was shown that
the systematic designs for robust adaptive laws were
similar to those for uncertain linear systems. Lastly,
it was also important to note that these nonlinear
control methods led to the robustness and approx-
imate output tracking of all the closed-loop sys-
tem with robust adaptive laws. Because the con-

trol schemes developed were designed on some re-

strictive assumptions such as the full-state measur-

able condition, the local domain of both state vari-

ables and parameter estimate, and the single-input,

single-output nonlinear systems, we need to study
some prospective works like output feedback con-
trol, global domain control, and multi-input, multi-
output control based on the control schemes devel-

oped in this paper.
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