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1. INTRODUCTION

An overwhelming majority of the nonlinear prob-
lems encountered in practice are able to he de-
scribed or approximated by polynomial functions
with sufficiently high order, so the research on poly-
nomial nonlinear systems descrves our attention
) Many researchers have considered the prob-
lem of polynomial nonlinearities by a compact de-
scription using Kronecker power, which has bene-
fited the analysis and design greatly. Okubo and
Kitamori designed a regulator in the form of in-
finite expansion 6), and Okubo published his sta-
ble design of regulator with a genetic algorithm for
the systems, polynomial in state and linear in in-
put 7). Sontag et al reported the application of
algebraic geometry to discrete time systems 2) and
a more extensive study of observability 3}, Ichn
Baillien! studied this class of systems using meth-
ods from algebraic and differential geometry 5) and

proposed a ellicient condition for regulator prob-

lem 4) .Unfortunately, they did not provide a feasi-
ble solution for the systerns.

In this paper, we design o globally asymptoti-
cally stabilizing direct feedback control using Kro-
necker powers of state vector for the plants with
polynomial dynamics in the state and input. A ge-
netic algorithm is employed to find suitable gain,
and algebraic geometric concept is used to simplify

the design.

2. PLANT ASSUMPTIONS

Consider the nonlinear systems which dynamies arc

polynomials in the state and/or the control, ie.,
& = P(x,u), (1)

where P(, ) is a polynomial function vector in the
components of the state z € R™ and the control
u e R,

Using Kronecker power, the systems can be de-
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scribed as

T = Bo(iﬁ) -+ B (‘t)u’ + ‘BQ‘(:}:)UD}

o By (@)ul
N,

= Bi(ahul, (2)
i=0
N
Bi{r) = > Bi(ally, (3)
=0
where B;(z) ¢ %"“"“i, B € Rrax(ninl) gl
and /Y denote the Kronecker power of x and u in

j, t times respectively. If, for example, n; = 2,

T
T =[x @]

, (4)

7! = [x? T1xry Ik m%}T‘ (5)

We can rewrite the above systems as

Ny Nz

- ZZB 21y

1=0 7=0
N, Ng

PRI

+=0 j=0

[J] ® ulr (6)

here, the symbol ® denotes Kronecker product.
Without loss of generalily, let Bgy = 0, and de-
fine a new vector v € R™ as ¢ = v, Combine the

new vector with the original state,

N. N,
i = ZZB (1 @ o), (7)

i={ j=0
T o= w, (8)

and denoting an augmented state vector as z &

R, ngz = ng + Ng, we have

. - m (©)

r = [I, Ulz=1Lyz, (10)

u

[0 I,]z= Fyz, (11)

Bij(:c”] pully = Bij(E:E:'j} & EE])zfi"‘j],(lE)

here, EE ] ® EE] is the Kronecker product of E:[,;j Jand
B

Let maz[i + j} = 2N — 1, then

Ny Ny

i o= Y Y Bi(Eile )l
i=0 j=0
2N~

1
= > {y. By(EY e Eth}M, (13)

k=1 itj=k
where
Banw ={ D Bi(EV ® EE)}S,. (14)
i+i=k
Sk is a symmetric tensor, so By i is a [1, k[-type

covariant tensar,

Let
B,
Ay = { ([)1,&}]1 (15)
0
s - [ -
the systems can be unified as
2N-1
zo= Y Apw+ B
k=1

= Agpan—nG* (@) + By,  (17)

here,
Actizn-1 = [ApyAna - Apenv-1),(18)
mn
N 2]
GEN-1(,) = o (19)
S2N-1)

3. POLYNOMIAL FEEDBACK

CONTROL

2N-1 k
First we define a gain set A{Kgpan_1 € 1" XD ey T i

Kenav—1 = KpgKig - Eugnv-y)h - (20)

where K5 Is a [1, k]-type covariant symmetric
tensor. For the systems in (17), using the slate
vector's Kronecker power in 1 ~ 2N — 1 limes as

in (19}, we choose a direct feedback control as

o= —Kc’h,zN—l]G!zN“l}(zj} (21)



Lere, gain Kgpanv—1) € &. Then the closed-loop

systemn dynamics are

2= (Agnan-1 — BKepan_1)GPY~U(z). (22)

- N N
Let us define a matrix set Q{PC[N,N] = EFEZJc:l ng xEk;x ”f}

with
Py Fiar Pii
lrE,G‘EJ’\":!’VIZ ﬁ[(;]]]] P[(Z.A;I} . PI{;NA? '
A

(23)
where blockﬁlgiﬁ} € Xl oig a [¢,7] symmetric
tensor at block position (i, ). Deline another ma-

AN~
trix set T{Pg1onv-1] € S‘Bﬂ‘xzkﬂ "1 with

PG[J,'),N—H = lP[1,11P[1,2] v P[1,2N~1]]: (24)

where Py y is a [1, K] covariant symmetric tensor.

Choose a Lyapunov function candidate as
1 }
V() = §GT[N](Z)PG[N,N]G[N](Z) (25)

with pG[N,N] & §1. Then V(t) can be rewrilten as

20N —
Vi) = Z

k=1

ZTP[],L.-]ZUC}, (26)

where

(1,k—i-+1)
izt 1P|1k]

for L <k <N,
k N r(1,k—141)
__{_1 Zi:k—N’+1 I)[l k|

for (N +1) <k <{2N -1).

Pk = {27

i.e. there exists a projection ¢:

The derivative of V(t) in (26) is

aN-1

> M Pyt
k=1

= 2TPG[1,2N-—1]G[2NWH(2}- (29)

vy =

From {17), we have

: 1 - :
v = _EGTIZN V() (K oy BT

Papen-y+ Pq‘:[l,h\’fl]BKG[‘l,'-_?Nwl]

- Agil,QN—HPGil,ZN—l}

- Pgﬂ,zN_uAG[1.2N—1])G[2N‘“”(z)
= *%GT{QN_ll(ZJchzN—sz—u

GEN=1(z) (30)

here, just like set ), we define a symmetric ten-
N-1 k
sor set {Qepn_1,2v-11 € mz" o Wb "}

with

Gepv-12n8-1)

(1,1) (1,2) (1,2¥-1)
Q{l 1] Q{},zj Q[l zi\f 1
(2,1) (2,2) (2,2N-1)
Q[z 1 Q[z,z] Q{z,w—u
(2N 1,1) (2N 1,2) (2N =1,2N—1)
Q[zw 1,1 Q[QN 1,21 Qm 1,2N—1j

where blockQ(” € R is a [i, 5] symmetric

tensor at block position (1,7). Qgn—1.2n-1) i3

noted as
@apN-1,2N -1
- Kg[l,zw—qBTPGgl,zN-u
+ Pg[l.QN 1 BEapanv-1
T

— Agpen-yfepay-y

- Pg[l,EN—l]AG[].QN—l] (31)
where Qgv—1,28v-1] € ©, L.e. there exisls a pro-

jection g

Y x A— 0. (32)
Sa, IE'G[N,N] e 2 and Kgppav-1 € A can be pro-
jected to Qaopn_12v—1) €O a3

ohrxa®e. (33)

(31) is a equation like the Lyapunov equation , we
can call it extended Lyapunov equalion.
If a PG[N,NI and a Ky an 1) exist, and, for

any z # {0}, satisfy

GT[N](z)ﬁ(?[N,NIGIN](Z) > 0,



G N2 Qopn-12v— G () > 0,

(35)

noled simply as
Powy > 0, (36)
Gopn-12v-1 > 0, (37)

then

V(@) > 0 (forany z #[0]), (38)
V{t) < 0 (forany z # [0}), (39)
Vity = 0 (z=[0] only), (40)
Vi{t) — oo (when | z|-— o), (41)

50, Kgnav—1) is a globally asymptotically stabiliz-
ing feedback gain from Barbasin-Krasovskii theo-
rem (See, e.g.,u)).

We can summarize the above as Theorem 1

Theorem 1 The rnonlinear systems

Px,u), (1)

where P(-,-) 25 a polynomial function vector in the
components of the state © € ™= and/or the control
u € RN, can be nugmented by b =v inz = [Z} ,

as

¢ = Agnan-yGPY () + Bu. (17)

If there exist a ﬁ(?[N,Nl and o Kgp onv-1) salisfying

pG[N,N} > 0, (86)
Qopnoiov-y > 0, (37)
the control v = —I{G[LEN_”G{ZN‘”(z) s globally

asymptotically stabilizing.

4. SIMPLIFICATION AND RE-

ALIZATION

In order to realize the feedback control ahove, we
have to discard redundant informaltion in the rela-
tionship between Ky 2y ) and Py g 1) as well
as QG[QNngNﬁll. In algebra, the idea of factoring
out extraneous or repetitive data is accomplished
through the concept of a quotient set. Intuitively,
the notation of a quotient is nothing more than di-
viding the total sct of objects under consideration
into those which are of interest and thosc that are
not. The rule of separating interesting objects from
uninteresting is based on the idea of two elements
being equivalent. Roughly speaking, we say two
objects are equivalent if they differ only in delails
that arc not important for the problem at hand.
Let us be more specific.

Correspond with the index |-], we introduce a
index (-} to denote contract expressions related to
contract form of ©9. For example, the contract

form of z® in (5) is
2 =22 zymp 2|7, (42)

herc the cntries are ordered lexicographically, and

(17) becomes

5= A an-nyGHN TV (Z) -+ B, (43)

Acapn-1y = [Ag A - Apan-1](44)
L
2

GVl = : , (45)
2(21'\}—1}

Correspondingly, we denote the compacted sets

QM {Panw sy b T/ A2 {Popan -1 h 8/33{Kapznv-1 h

and ©/M{Qaen—_125-1)} , the equivalence sets of

2, T, A, © respectively, as

0 N oq,



[
ES
S

lr
2

(46)

here, the elements of {2, and B, are symmetric ma-

trices. The projections in {33} become

Q.Br.xa.Be, (47)
with

d2: Ma-di- A, (48)
and @y

(aEN-12N-1)
= K&uan-1yB Pegan-y
+ Pl an—1yBKepan-y

- Ag(l,zN—nPG(l.zN--l)
— P an—nAc(an-1y- (49)
There even exist redundant information in set
{1, and set ©.. Lelting the entries which are far
from the diagonals equal zero in matrix ﬁG(N_N)
and Qgey-1,2nv 1) 88 possible as we can, we can

construct symmetric matrices with only indepen-

dent entries remained, denoted as IE’G((N,N)) and

Qcan—1,2n 1)) Tespectively. Set Q::/A{JBG((N,N)) }
and B/ MQaan 1,27 1)) } are the equivalence set

of 0, and ©,. We denote them as §2; and 8,, i.ec.
0.5 Q,,
0.5 0, (50)
So, our task has been changed equivalently to find

a ﬁG((N,N)} and a Kr(;(l’gp\r,w to satisfy

Poumny >0, Qopon—12n-1y3 > 0 (51)

nonumber

= V() >0, V{t) <0. (52)

The following equivalence relations will help to un-

derstand the above transformations explicitly,

GT{N}(Z)ISG[N,N]G[NJ (2)

GTW () By iy G (2)
= TN (2) Py iy GV (2) (53)
GTEN () Qv 1ov - yGRY (z)
GTEN "D (NQapn—1 2v—1GZ 1 (2)

GTN-1) (z)QG<<2N_LEN_”)G(?{\'—I}(@5_}4)

and Fig. 1 indicates the commulation diagrarnmat-

ically.
a P rea P
TR Y
0, -2 roxa, Y2,
Mo A
{2, O
Fig. 1 Commutative diagram of P and

Corollary 1 If all eigenvalues of PG({N,N)) and

Qaiav-12n8-1)) are positive, the control
U= —KG(l,zN—nG(QN_U(Z)
15 globally vsymptolically stobilizing.

It is hardly feasible to obtain a Kq g1y from
given pG'({N,N)) and Qaean 1,27 —1yy computation-
ally, so a genetic algorithm is employed, using Corol-
lary 1, to search K¢y an—1y , which is the efficient

condition {NOT necessary!) for (52).

5. GENETIC ALGORITHM

By recursively building the positive definite lead-
ing principal minors of a symmetric matrix, we
can map the strictly posilive definite matrix from
a series of numbers.

For the symmelric matrix

P, € R**™ we can divided il as,

Pan — |:-[;)c§1‘1—i an—l] (55)
bn—1  Pen

with £2,_1 a matrix in (n — 1) x (n - 1), Py 2

(n — 1)-vector, and p., a scalar. We have

|Pcm.] = Epan—ll(pcn - Pi?;;f]_-l_)_l anfl)- (’56)

an—1



Let 1Pﬂn*1|(pm_PT P_1 an—l) = C\!in +ﬁﬂ, >

bn—1* an—1

0, and Pb"n_l = [an1  Gn2 Qnp—1 ], & TAN-

domly generated n-vector a,, € R™*1,

a;{ = [anl Qn2 G —1 C'fnn] 3 (57)

and a positive real number &, > 0. Ther

al + Gy

TLTE

Pen
}Pan—l l

+ P PLL B i (58)

So, we can build a symmetric matrix P, with
|Pn| = @2 + 3, > 0 from a symmetric matrix
Pono1 with |Ponoq| > 0, and a randomly gener-

T

ated vector ol = |[on  On2 Opn-1  Cnn

as well as a scalar 3, > 0.That means we can build
a symmetric matrix with positive definite leading
principal minors, say, strictly positive symmetric
matrix P, from a randomly generated vector ah =
[1 @21 rop (., } 25 well as n-vector 8 =

[B1 B2

numbers, 1.e.

8] which entries are positive real

Wi oap — P (59)

Specifically,

Wi o — pG{{N,N)} (60)

with ap € RVex1,

= a1y — (0, +1). (61)

Also we can easily divide a free vector ag € RVx 1)

2N
Ng = n;x E n. Hi
k=1

= Ty X (le"f*lH.gN*l - 1)1 (62)

to form the rows of Kig; v 1y in order, say form

Kepan-y-
proor — Kgaan -1y (63)

Coding ag = [ap oy, we get a gene, noted as

[aTelol

The evaluation function for the GA is selected

as
fQ = ?nin{I)I:DE:"'aDNQ}: (64)
2N—-1
Nog = Z neHi = n41fav—1 — 1, {65)
k=1
fo — maz, (66)

where D; are the leading principal minors of matrix
Quanv-125-1y)- By the operations of crossover,
mutation, elite selection etc., we search evolution-
arily for a proper gene which maps a P(-;((N'N»
with all positive eigenvalues and a Kgqan-1) to 2
Qeian—1,2n -1y With all positive eigenvalues.

The procedure is as follows:
Procedure
stepl Generate age randomly;
step2 Compute ag = [op ax| from age;
step3 Compute Pg(anv—1) from ap:
wioap— Poyma,
b2 Pouway = Popan-n;
stepd Compute K an—_1y from og;

Step5 Compute QG((ZN— L2ZN—1})

stepB Ewvaluation, and judgement of stop or not;
If fo = 0, the K¢y 2v-1y is what we want (o
construct a controller in {21) that makes the

systems (17) globally asymptotically stable;
step7 GA operation;

step8 Go to slep2.

6. NUMERICAL EXAMPLE

For the systems of ny = 2, n,, = 1, and N = 2,

g
I = [B[)l Buz .803] ’Cl21

e

-+ [Bmu{l]



+ Bzl @ um] + [Bgou[al] (67)
I
: = 7] (68)
x = [I; 0)z=Fgz (69)
v = [0 L)z=FE,.z (70}
2 {Bm E_-,_- + BmEu] 2[1]
+ [BD‘.&E:E o E:r + BlIEm & lau
+ Baok © By 2 [BogFp © By @ B
+ BIZEZ & E:n @ Eu + 321Em @ Eu. ® Eu
+ By B, ® E, ® E,] 2 (71)
Nurmerically,
il —23’:1 + 02.’152 + 012’3% - 0.15.’1,'11172
+0.222 — 328 + 0.623w0 — 0.4z 23
+ U.Qz% +au+01zu+ 0.2z
— 01220 + 0.6z m9u + 0.722u
+u? + 2ryu? + mou® +0.24° (72)
Ey r1 — 3.625 ~ 0.2527 — 0.6217;
+0.322 - 0.423 — 051250y — 021223
- 5$; +u—01xyu -+ 0.5.’172’115
+0.832% — zyzou + 23U — u®
~0.57u2 + 0.5u3 (73)
ie.
[—2 0.2
BOI i 1 _36] ) (74)
[ 0.12 0075 —-0.075 0.2 -
Boz —025 —03 0.3 0.30] - (1)
B -3 0.2 0.2 =013 0.2
03 | —04 -017 -017 -007 -0.17
—0.13 -0.13 0.2, _
007 —0.07 =5 ] : (76)
1
BID 1] 3 (77)
(01 02
Bu | —0.1 0.5] ! (78)
) [-0.1 03 03 07
B2 . 03 05 —05 1 ] ’ (79)

+ .B'i]ﬂ?[]] & U,[l] -+ Blg.’ﬂ[2} & u[l]} + 1;820‘1&[2]

[ 1
By = ml], (80)
2 1
0.2

Select 3; >0 (i = 1~ 9), say veetor 4 as

4 = [0.115]5 a0 200

2000 10000 40000 | (83)

For 31-vector ap and 19-vector oy, we code oy 28
165t % 50 = 800bit of number 20. Set elite number
2, mutation 6bit in 8000t of number 5 and ag;
range; —3.2767 ~ 5.2767. The evolution process is

shown in Fig. 2. After generation 2183, we find

501
[\
50

-100 |

Evaluaiion Function

-150

-200

il 500 1000 1500 2000 2500 3000
Generation

Fig. 2 Search process of GA

Paynonyys Kapan-1y to make Qepan-128-1))

strictly positive definite. At generation 3500, we

have
Foyaay

[ 9.3556  0.0350 1.0886 | —0.0141
0.9359 03941 0.2692 0.6423
1.0866 0.2692 2.9639 | —0.4765
—0.0141 0.6423 —0.4765 | 3.5746
= 0 (.1579  (0.4169 0.3854
0 0 0.6558 | ~0.6764

0 0.1681  (.2883 0

0 B 0.4443 H

0 0 0.2439 0




Q0 0 0 0

0.1579 0 0.1681 0
04169  0.6558  0.2883  0.4443
03894 —0.5764 0 0
3.4543  0.3085  0.2258 0
0.3085  4.3473  0.0413  1.2491
0.2258 0.0413  9.8990  —0.1904
0 1.2491 —0.1904 5.4216
0 0.8032 0 —0.2205
.
0
0.2439
0
0 (84)
0.8032
0
~0.2205
4.2133 |

Kao s
= [ 3.0685 -0.4742 2.3685 ! —1.5744

-1.3194 -1.1279 -3.1729 —1.8758

1.7020 I 0.1662 2.8137 2.4222

—0.3733 —1.1492 -1.2693 -1.2928

2.6138  2.4023 3.1?22] (85)

Using the gain matrix in (85), the feedback control
syslem response is simulaled in Fig. 3 with initial

state
1

z(0y= | -1]. (86)
0

The simulation indicates that the state converge to

0.5\

0

v

05 t/x,

1

i} 1 Z2 3 4
Time
Fig. 3  The response of 1he system

vero asymptotically stably.

7. CONCLUSION

This paper provided a general mcthod to design
globally asymptotically stable polynomial feedback
control for nonlincar systems. It is convenient to
search gain matrix by a generalized GA algorithm.
The method, of course, suits for bilinear systems
and multilinear systems cven for systems with ra-
tional functions.

The further research should include how to get
the gain malrix analytically or judge the existence

Of KG{I,ZN—I) and PG((N,N}) deﬁniteiy.
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