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1. Introduction

The SpaceDyn is a MATLAB Toolbox for the
kinematic and dynamic analysis and simulation of
articulated multi-body systems with a moving base.
It can be downloaded from

http://www.astro.mech.tohoku.ac.jp/spacedyn,
and used freely for academic purpose. Any of com-
mercial use is not permitted.

We developed this toolbox motivated and inspired
by Robotics toolbox developed by Peter 1. Coke,
which is available from

http://www.mathworks.com/ftp/miscv4.shtml

We took one m-file and use it as the original is,
but our toolbox as a whole, docs not have compati-
bility with the Peter Coke’s toolbox unfortunately.

We hope you can find our toolbox uselul for your
research, and we'd appreciate your gnestion, com-
ments or feedback if any.

The following is a memorandum regarding our
toolbox development.

o This toolbox is for the use with MATLAB 5.0
or higher. We use three dimcensional array
which is not supported in version 4 or lower.

e We assume the system composed of n+1 bod-

ies and connected by = joints. Let the body
0 be a reference body. Multiple branches can
attach on any single body, as far as the system
keeps a topological tree configuration. There
must be a single joint between two bodies.
We call a terminal point or the point of in-
terest such as manipulator hand as endpoint.
Each body, except body 0, can have one end-
point at maximum. In this document, the
terms body and link are the same.

The toolbox allows force/torque input on (1)
the centroid of the reference body, {2) each
endpoint, and (3) each joint. The toolbox
computes the position, velocity and accelera-
tion of (1) the centroid of the reference body,
(2) the centroid of each body, (3) each end-
point, and (4) each joint.

Computation of input force/torque are open
to user programming. You can arbitrary de-
cide each joint as either active or passive one.
If you give always zero torque, such as 7; =
0, the corresponding joint behaves as a free
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joint. Or if vou give such a torque as:
= _qu-i - DQ1

the joint behaves as a passive visco-elastic
joint. You can treat even a flexible link, by
modeling it as a discrete successive chain of
rigid links connected by elastic joints.

Of course, you can give any arbitrary control
torque determined by your own control Taw,
on all or arbitrary selected joints.

We know that the Denavit-Hartenberg nota-
tion 15 commonly used in the field of manipu-
lator kincmatics with the advantage of unique
allocation of coordinate systems with mini-
mum parameters. But we know that the DH
sometimes locates the coordinate origin away
from the location of an actual joint. From
the dynamics point of view, the angular ve-
locity and the inertia tensor should be defined
aronnd the corresponding joint axis or body
centroid. We then do not use the DH no-
tation but introduce a rule to define the co-
ordinate systems with more flexibility. Qur
rule locates the origin of the coordinate sys-
tem on each joint and orients the primary
axes so that the inertia tensor should be sim-
pler, but admits 3 position and 3 orientation
parameters among two successive coordinate
systems.

For the representation of attitnde or orienta-
tion, we use 3 by 3 direction cosine matrices,
coded with a symbol C. For example, C)
is the direction cosines to represent the atti-
tude of the body 0. The advantage of direc-
tion cosine is (1) singularity free, (2) we can
easily derive Roll-Pitch-Yaw angics, Fuler an-
gles, or quartanions, and (3) it is easy to find
the mathematical relationship with angular
velocity.

On the other hand, we frequently need Roll-
Pitch-Yaw representation also. For RPY an-
gles, we use the symbol Q. For example, in
order to express the twisting angles between
two coordinate systems, we counsider o (roll)
around z axis, 3 (pitch) around y axis, then v
{yaw) around z axis. The set of these angles
are coded by Q,.

Mathematical Graph Rep-

resentation

In order to mathematically describe the inter-
connection of the bodies, we adopt a method from

mathematical graph theory 1, We simplify it with

additional rules on the assignment of link and joint
indices, so that we can easily and uniquely con-
struct two types of matrices {vectors); a connection
index B and incidence matrices S, Sy, and S..
The procedure {rom indices assignment to matrix
construction is summarized as follows:

1)

2)

3)

4)

5)

-2 -

Assign the indices of links and joints in the
following manuer.

s Reference body is denoted by &ink 0.

¢ The index of a link ¢ in the physical con-
nection between link 0 and link 7 must
be 0 <<y

e One link can bave multiple connections
with other links. As a result of the above
statement, a link 2 (2 > 0) has one lower
connection {which indox is smaller than
t) and zero or one or multiple upper con-
nection(s) (which index is greater than
i).

s There is one single joint inlerconnecting
two links.

¢ Indices of joints begin from 1, and joint
1 is physically attached on link 7.

e Then the joint interconnecting link 0 and
link 1 is joint 1, and the joini intercon-
necting link 1 and link 5 is joint 5, for
example.

Connection index vector B is used to find
the lower connection of a link, which cxists
uniquely for a link ¢ (¢ > 0).

e The element of B; is the index of the
lower connection of link 2.

Incidence matrix § is used to find the upper
connection of a link, which may not exist or
exist one or more.

Each element of §;; (i,7 = 1,...,n} is de-
fined by:

+1 (if i=B,)
S5=4 -1 (f i=3)

0 (otherwise)

Define a matrix Sp; ( =1,...,n) as:
+1 ('ﬂf 0= Bj)
S[]j = R
0 (otherwise)

This represents a flag to indicate if link i has
a connection with the reference link 0.

Also define a matrix S,; (j =1,...,n) as:

s {+1 (if link j is a terminal link)
E_‘}.:
0

(otherwise)
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Fig. 1  Sample System

Fig. 2

Multibody System

This represents a flag to indicate if link i is a
terminal endlink.

Figure 1 depicts an example of a system with
multiple branches numbered by the rule presented
here.

3. Coordinate System

Let the inertial reference coordinate frame be de-
noted by {£;} !, which is stationary or lineary
moving with constant velocity in the inertial space.
It is not physically precise but we sometime con-
sider the orbital fixed frame as the inertial frame
in the sense of practice.

We also define moving coordinate frames fixed on
cach link. We do NOT take the Denavit-Hartenberg
convention but introduce a simpler and flexible rule
to define the link coordinates. Our rule is as fol-
lows:

1) If the joint 7 is revolution, then

¢ locate the origin of the coordinate sys-
tem {X;} on joint ¢ and fixed it to the
link 2,

s set 1ts z-axis to coincide with the joint
rotation axis,

1The expression {Xr} is use to represent the basis of a

coordinate [rame, a set of unit vectors: wvectriz, see 2)

e orient its r-axis toward joint z +1 or the
direction in which the inertia tensor is
expressed easier.

2) If the joint ¢ is prismatic, then

¢ locate the origin of the coordinate sys-
tem {¥;} on the place when joint i has
zero displacement and fixed it to the link
t—1,

e set its z-axis to coincide with the joint
displacement axis, with the positive di-
rection,

= orient its z-axis toward the direction in
which the inertia tensor is expressed eas-
ier.

We may also need a coordinate system located
on the link centroid. In such a case, we define the
link centroid coordinate ¢ parallel to the coordinate
located on joint 1.

4. Direction Cosine and Co-

ordinate Transformation Ma-

trix

The direction cosine matrices C; are commonly
used to represent the attitude or orientation of body
t in the inertial frame in the field of aseospace en-

gineering 2). Ou the other hand, the coordinate
transformation matrices with the notation of ' A;
are commonly used in the field of robotics. These
two are eventually the same:

C,="1A;

Since we define the link coordinate system as
above, we generally need three axis rotations to
coincide from {¥;_;} to {E;}. Let A4;(w,), A2(8.),
Az(7:) be coordinate transformation around each
principle axis and A3(g;) be the rotation angle of
joint Z, then we get the following relationship { see
Figure 3 ):

(%} = "Ac(Zia)
= Agf{g)As(r:)A(B) A {Zi-1 H(1)

where As(v;) and As(g;) scem duplicated, but -y,
corresponds to an offset angle and should be sepa-
rated from a net rotation angle g;.

Note that the RPY representation of the attitude
of link 0 is:

{En} = CDT{EI}
= UA;{E;}
= As(y0)A2(Fo)Ar{co{Z}  (2)



Coordinate Transformation

Fig. 3

where oy, By, v are Roll, Pitch, Yaw angles respec-
tively.

The direction cosines are redundant way to rep-
resent attitude, but its advantage is that the rela-
tionship between attitude and angular velocity can
be expressed by a simple equation, such that:

CO = —CTJ[]C() (3)

where € is a time derivative of Cy and w is a
skew-symmetric operation of the angular velocity
wy. This relationship is used for the routine of
singularity-free integration from angular velocity to
attitude.

5. Kinematics

5.1 Link Vectors

Link vectors for a link ¢ are defined as follows (
see Figure 4 ).

c;; : vector from the centroid of link ¢ to joint
]
£;; : vector from joint ¢ to joint j.

Eij =Cj; — €y (4)
¢;. : vector from the centroid of link ¢ to the
end-point if link ¢ is an end-link.

£,. : vector from joint 2 to the end-point.

£ie = Cie ~ €y (5)

joint j

3 Joint &
i .

joint i link i

Fig. 4

Position vectors

5.2 Revolution Joint

For a successive set of links connected by a revo-
lution joint, velocity v; and angular velocity w; are
calculated recursively { sce Figure 5 ). When v,
and wy are given,

Tw, = Twp, +TA ki (6)
I'Uz' = {'UB; + Iw'B‘ X ICBJ — Iwi X ICﬁ (7)

And accelerations are calculated as the following.

] _ ; ] .
To, = fhg, +Tw x (TACkd) + 1A ki, (8)
I’liz = 1"t'.l'jgé + I-’-:'JB‘. x ICHJ + "w;_;. X (Iw3|i X ICB‘,;)

H'cbixjc,-,-—fulx(fwix"cﬁ) (9)

5.3 Prismatic Joint

If a joint is prismatic, the kinematic relationship
becomes as follwos, for verocities:

[w‘i = IwB.' (10)

Ly, = T

vg, + Iw_B‘, b4 ICB‘.i - lwi X IC,:-,:
o x ("AMkp) + T Atk (11)
And for accelerations:
Lo = log, (12)
I I- I I _
vp, +wg, XeKgt+ wh X ( Wy, X CB”)
—[‘-'.-’1' X £ — [wi x [Iwi x cii) + It’.:)l X (IAliki(b,)
g x (w; x (PAMR;8:) +27w; x (TA k.9,
+ Ak (13)

Ty, =

5.4 End-Point Kinematics

The kinematic relationship around the end-points
is expressed as Iollows:

&y = J o+ Jods (14)
&y =T+ T+ Jhis + Jois (15)
x, €R° . position/oricntation of the base
xp, €R® . position/orientation of the end-paoints
¢ € R" ; joint variables
J, € R%%% . Jacobian matrix for base variables
J.. € R®*" : Jacobian matrix for joint variables
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Fig. 5 Kinematics

6. Equation of Motion

The equation of motion of the system is expressed

in the following form & 1),
Hg, Hbm fi?b Cy
T - +
Hbm H,, o Cm
Fo gy
= + o | F (16
M
where
-T
H@e}ﬁxﬁz[ wb Tm“g] (17)
wrg, H,
JTw
Hy,, € R®*" = [ ] (18)
H,,
HWERMSEZ(L-&-TR:"’_'E;"—'D:‘)*‘ID (19)
i=1
H,,€R*"= Z(I,;Jgi +mirodr) (20
=1

Tl

H, € R"™" = Z(JE,;IJR:- +mJ ) (21)

=1

JTw ER““EZmiJn/w (22)

=1

Jpi € RP*" = [y % (r; —py), ko x (r: —pa),-- -,
oo kix{ri—p)0,...,0]  (23)
Jgi € RB**" = [k, k2, ..., ki,0,...,0]  (24)
rog ER =1y — 1y (25)
T‘o,‘,ERsET,ﬁ—TD (26)

m; : mass of link ¢ of arm &

w : total mass of the system (w =" m;)

T : position vector of centroid of link 2

P; : position vector of joint ¢

k; : unit vector indicating joint axis direction of link ¢

T : position vector of centroid of satellite base body

r, : position vector of a total centroid of the system
Cyp,Crn © velocity dependent non-linear terms

Fu : external force/moment on the base

T : joint torque of the arm

Fn : external force/moment on the hand

E : 3 x 3 identity matrix

and a tilde operator stands for a cross product such
that ra = » x a. All position and velocity vectors
are defined with respect to the inertial reference

frame.

7.

Forward Dynamics: Simu-

lation Procedure

The procedure to compute a forward dynamics
solutions are summarized as follows:

1) At time ¢, compute link positions and veloci-

ties, recurcively from link 0 to n.

2} Compute the inertia matrices using equations

(17)-(26).

3) Set accelerations £, and ¢ zero, and external

forces F;, and Fj, zero, then compute the in-
ertial forces recursively from link n to 0. The
resultant forces on the coordinates x;, and ¢
are equal to the non-liner forces ¢; and ¢,
respectively.

4) Determine joint control forces 7 and thruster

forces on the base F; from a control law.

5) Compute the accelerations by:

Ep
i

H,

|- [
{6

Hbm

]
RES

6) Integrate the above accelerations to yield the

velocities and positions at time t + Af.

7) go to 1. and continue.



8. Inverse Dynamics

Inverse dynamic computation is useful for a com-
puted torque control. It is also needed for the for-
ward dynamics in numerical computation the ve-
locity dependent non-linear terms as described in
the last section.

For the inverse dynamic computation, an order-

n, recursive Newton-Euler approach 5) is well-known.
Newton and Euler equations for a link 7 are ex-
pressed as:

Fl' = mlv} (28)
N, = Lw, +w;x (Iiwi) (29)
where F; N, are inertial force and moment ex-
ert on the link centroid. Together with the fol-

lowing force and moment exerting on the joint or
end-point,

f;,m: : Force and moment on joint 1.

feivme; - Force and momnet on end-point (
if link ¢ is an end-link )

the dynamic equilibrium expressed in the following
form (see Figure 6 ):

fi = Fi+ > Suf;+Seif. (30)
J=i+l

n; = N,'-l- Z S:'J(f,:j ij +ﬂ.j)
j=itl

+8ic; X Fi+ 8.4, x f,, +n.031)

for around a revolution joint, and

fo = Fi+ Y Sif,+8uf.. (32)
F=itl

n = Nt ) Syllyxf;+n;) (33)
FEIR ]

+8i(ci — ) X Fi+ 8ei(€ie X ., + 1)

for around a prismatic joint.
After the computation of whole f; and n; for
t =1 to n, we can obtain joint torque as:

nffk; (if revolution joint) (34)
fllk, (if prismatic joint) (35)

T, =

T =

And the reaction force/moment on the base cen-
troid is obtained as follows:

Fy = Z Soif, (36)
i=1
Ny = Z Sm(CQi X f,; -+ nz-) (37)

i=1

f; nj

end-effector

-

- -~"link k

-

Fig. 6 Dynamic equilibrium

9. Application Examples

Here, some of applications for dynamic simnla-
tion of moving-base sytems are illustrated, which
all are relevant to actual space flight missions.

Figure 7 (a) depicts a simulation model of ETS-
VII, a Japanese free-flying space robot with 2 me-
ter long 6 DOF manipulator arm. The satellite was
launched November, 1997. It is currently flying in
orbit, as of August 1998, and a number of signifi-
cant experiments on space rohotics are conducting
on the satellite. Free-flying system dynamics in-
cluding manipulator reaction and the vibrations of
solar paddles can be analyzed with the SpaceDyn
toolbox.

Figure 7 (b) depicts a flexible-base robot. Prac-
tical examples of such a system are SRMS-SPDM
system, a Canadian made space station manipula-
tor system and JEMRMS, a macro-mini manipula-
tor system for the Japanese Experimental Module
of the station. For these systems the internal dy-
namics, as presented in the following section, will
be a key technology in terms of the reaction and
vibration management.

Both figures 7 (a) and (b) are illustrated using
a uselul animation tool named “XAnimate,” which
can be [reely downloaded from 6),

Figure 7 (¢) is a touch-down simulation of MUSES-
C asteroid sample-return satellite. For this simu-
lation, impulsive ground contact is a key issue and
the contact model discussed in the previous sub-
section is applied 7). With the development of the
contact model for tire mechanics, the dynamic mo-
tion of off-road articulated vehicle can be also sim-
ulated, as shown in{d} 8), such an application is
found in a mission of a planetary exploration rover.
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