計測自動制御学会東北支部 第199回研究集会(1999.5.21) 資料番号 181-6

交流電位差法による摩耗の推定

Estimation of Wear Using the ACPD Method

○清水 友治*, 岩渕 明*, 松本 行朗*○Tomoharu Shimizu, Akira Iwabuchi, Koro Matsumoto

*岩手大学

*Iwate University

キーワード:電位差法(potential drop method),メンテナンストライボロジー(maintenance tribology),非破壊検査 (nondestructive inspection),カルマンフィルタ(Kalman filter)

連絡先:〒020-8551 盛岡市上田四丁目3-5 岩手大学 工学部 機械工学科 機械材料及び機械加工学研究室 清水友治, Tel:(019)621-6416, Fax:(019)621-6417, E-mail:tshimizu@iwate-u.ac.jp

1. はじめに

近年,生産システムやプラントは,ますます 大型化・複雑化している.このような機械シス テムにおいて,故障の原因の多くは摩耗などの トライボロジー的要因であるといわれている. そこで,機器の保全を目的として,メンテナン ストライボロジー技術の研究開発が盛んになっ てきている¹.

本研究では、メンテナンストライボロジーの 1手法として交流電位差法を転がり摩耗のモニ タリングへ適用する.交流電位差法は非破壊検 査法の一つとして材料のき裂の検出に用いられ ている.一般に、転がり摩耗は表面から微小な き裂が発生し、比較的大きな摩耗粉を生成し摩 耗が進行することが知られている.よって、電 位差法の適用は有望と考えられる.しかし、摩 耗による表面損傷は疲労き裂よりも小さいこと が多く、交流電位差法において、より高測定精 度の測定システムが要求される.そこで、測定 誤差の大きな要因となる交流誘導起電力の影響 の補償機能を持つ交流電位差評価システムを構 成し、往復動転がり摩耗による表面損傷の評価 を行う.

2. 実験装置

本研究で使用した実験システムの構成を図1 に示す.本システムは往復動の転がり摩耗試験 装置と電位差の測定のためのファンクションジ ェネレータ、電流アンプ、DCアンプ、高速

図1 実験システムの概要

-1-

図2 転がり摩耗試験器

A/Dボード,そしてパーソナルコンピュータ等 から構成される.ファンクションジェネレータ から出力された交流電圧は電流アンプで電流に 変換され,試験片に印加される.試験片からの 電位差はDCアンプにより増幅され,オシロス コープおよび高速A/Dボードに入力される.高 速A/Dボードは2チャンネル分用意され,電位 差と同時に試験片に印加される電流を測定する ことができる.この印加電流は電流ループの途 中にある0.22Qの抵抗の両端の電圧をDCアン プを通して測定される.

転がり摩耗試験装置の概略を図2に示す.転 がり摩耗試験装置では,モータの回転を偏心機 構により振幅20mmの往復運動に変換する.回 転数は,10~1000rpmまで任意に変化させる ことが可能である.試験片取付け部は,ラック とピニオン機構により往復運動をしながら試験 片に回転運動を与えることができ,適当な滑り 率を設定できる.

また転がり摩耗試験には図3のような形状の 試験片を用いた.材質は上部試験片は軸受鋼 SUJ2,下部試験片は中炭素鋼S45CとSUJ2で ある.試験片には焼き入れ処理を行い,ビッカ ース硬さは上部試験片SUJ2では840±15HV, 下部試験片SUJ2では794±5HV,下部試験片 S45Cでは、597±56HVである.

3. 実験方法

実験は無潤滑下で行い,押込み荷重は80Nと した.この荷重における最大へルツ圧力は 1.168GPa,接触楕円長半径(転がり方向)は 0.326mm,短半径(軸方向)は0.100mmであ る.往復動は全振幅20mm,回転数は 1000rpmで最大繰返し数は30万サイクルとし た.また,歯数比21/23の歯車で上部試験片に 回転を与えることにより,滑り率は8.7%とな る.実験中の雰囲気は温度20±1℃,湿度30± 5%である.

下部試験片には上部試験片の転がり摩擦によ る直線状に摩耗痕が生じる.この摩耗痕に対し 45°の角度に電流印加端子および電位差測定端 子を配置した.これらの端子は直径0.5mmの 銅線を試験片にあけた穴に埋込みステンレス用 のハンダ付けにより取付けた.所定の繰返し数 で往復動を停止し,試験片の電位差および印加 電流の波形を測定した.

4. 交流電位差法の原理

直流電流は導体内を均一に流れるのに対し, 周波数の高い交流電流は導体の表面付近を流れ

-2-

図4 交流電位差法の原理

る.これを電流の表皮効果といい、表皮厚さδ は(1)式で表される.

$$\delta = \sqrt{\frac{\rho}{\pi f \mu_0 \mu_r}} \tag{1}$$

ここで,ρは被検査物の抵抗率,μ₀は真空の透 磁率,μ₁は被検査物の比透磁率,fは印加電流 の周波数である.

交流電位差法の原理を図4に示す.交流電流 が表皮内を流れると、検査物表面には電位差が 発生する.表皮厚さが被検査物のき裂深さより 十分小さいとき、流れる電流の経路差より、き 裂深さdは以下で表される.

$$d = \frac{L}{2} \left(\frac{V}{V_0} - 1 \right) \tag{2}$$

<u>ここで、Vはき裂があるときの電位差、V_oはき</u> 裂がないときの電位差、Lは測定端子間の長さ である。

5. 誘導起電力成分の補償方法

5.1 補償実験

誘導起電力の影響を補償するための予備実験 を行った.実験は、図5のように転がり摩耗実 験前の下部試験片に接続した測定端子の閉回路 面積を段階的に大きくすることで交流誘導起電 力を意図的に大きくし、そのときの位相差を検 出した.位相差は高速A/Dボードにより測定さ れた電流と電位差のそれぞれの波形をパーソナ ルコンピュータにより解析することで求めた. また、同じ信号をDCアンプ1とDCアンプ2同 時に測定することで、DCアンプ同士の位相差 も検出し補正した.

5.2 補償方法の原理

印加電流と測定電圧の位相差の測定による誘 導起電力の補償の原理を図6に示す.交流電流 の流れる表面に発生する交流電位差は電流に対 し45°位相が進むことが知られている².しか し,実測される交流電位差は90°位相が進んだ 誘導起電力成分を含み,真の交流電位差より大 きな値をとることになる.これが交流電位差法 における測定誤差の大きな要因となっている. そこで,印加される交流電流と測定される交流 電位差の位相差を検出できれば電流に対する 45°の位相進みを持つ真の交流電位差を推定す ることができる.

図6 誘導起電力の補償法の原理

-3-

図7 印加電流と誘導起電力の関係

表1 誘導起電力の補償実験の結果 (gain:1000)

Trial step	Measurement potential drop, mV	Phase difference, deg.	Estimated potential drop, mV	Standard deviation, mV
I	502.71	67.53	271.39	5.193
2	587.82	70.81	273.26	12.184
3	777.26	75.44	276.02	6.630
4	1031.49	79.18	273.79	4.757

5.3 位相差の検出方法

印加電流および測定される電位差は正弦波で あるので次式で表されるものとする.

$$y = \theta_1 \sin(\theta_2 t - \theta_3) + \theta_4 \tag{3}$$

ここで、yは測定されたデータ、tは時間である。 印加電流および電位差の(3)式におけるパラメ ータ0,のみを求めれば位相差を検出することが できる.ここでは、測定時のノイズを考慮し、 拡張カルマンフィルタ³⁰のアルゴリズムを用い て式(3)の全てのパラメータを求めた。

5.4 補償実験結果 印加電流の周波数10kHz における補償実験の測定結果をプロットしたも のを図7に,また,その平均および標準偏差を まとめたものを表1に示す.これは測定用リー ド線の配置を4段階変え,そのときのDCアン プからの出力を各段階5回測定し,交流電位差 と位相差を求めたものである.測定用リード線 の配置を変えることによって交流電位差が2倍 以上に増加したが,位相差により補正をすると, 交流電位差の変動は2%以下となった.

SUJ2 300000 cycice

図9 摩耗量の変化

6. 結果および考察

図8に摩耗痕の断面トレースを示す.今回の 転がり摩耗試験では,あまり大きな摩耗粉の生 成がみられず,ミクロンオーダーの小さな表面 のき裂しかみられなかった.これは,今回の実 験では,滑り形態を往復動としたためと思われ る.

図9にS45CおよびSUJ2における繰返し数と 摩耗体積の関係を示す.繰返し数15万サイクル でS45Cでは0.96, SUJ2では0.05mm³, 30万 サイクルでS45Cでは2.9, SUJ2では0.63mm³ となった.S45Cでは繰返し数にほぼ比例して 摩耗体積が増加するのに対し,SUJ2では繰返 し数の後半の摩耗が多いことが分る.

図10に測定された印加電流(電圧値として表示)と交流電位差の例を示す.この交流電位差 はDCアンプのゲインを1000倍にして測定されたものである.比較的大きなノイズがのってい

-- 4---

図10 測定された印加電流と電位差

図11 測定された電位差の変化と位相差 (S45C)

ることがわかる.

図11および図12にそれぞれS45CとSUJ2の 繰返し数に対する測定された電位差の変化を示 す.電位差は転がり摩耗試験直前に測定した電 位差V。で除した値で整理した.

図13および図14に位相差により補正した電 位差の変化を示す.これらの結果より,電位差 は,はじめ,減少傾向を示し,その後,繰返し 数の増加に伴い電位差が増加していることが分 る.このはじめの減少傾向は転がり摩擦により 表面付近の材質が変化したためと考えられる、 また,その後の増加傾向は摩耗の進行により表 面形状の変化によるものと考えられる.

7.おわりに

交流電位差法において交流誘導起電力によっ

図12 測定された電位差の変化と位相差 (SUJ2)

図13 補正後の電位差の変化(S45C)

図14 補正後の電位差の変化(SUJ2)

て生じる測定誤差を補償するシステムを試作した。本交流電位差法システムにより、転がり摩 耗による表面損傷の評価を行った。

参考文献

1) 木村:トライボロジスト, 39-7, 553/558 (1994)

2) T. V. Venkatasubramanian : J. Phys, E: Sci. Instum., 177, 65/771 (1984)

3) 片山:応用カルマンフィルタ,87/89 (1983)