a8 B Bl E AR AR B 101 MRS (2000.11.18)
HEEE 1912

HEEWT S TERFELEETDICH

Evolutionary Graph Generation and Its Application

O&mMkt, BER, HARZX, oL
O Naofumi Homma‘T, Dingjun Chen"T, Takafumi Aoki®, Tatsuo Higuchi*

ALK KREFEERERA E R
T EAZHRE = FHIER

*Graduate School of Information Sciences, Tohoku University
$The author is also a Research Fellow of the Japan Society for the Promotion of Science.

F—9—F : FEIBEFEH (circuit design}, E{LRAHE F# (evolutionary computation), B EEE (arithmetic
circnit), FEEEHE (logic synthesis), PC # 7 A # (the PCs cluster)

EHESE: TR0 i BT EEEHEFTHER S K E REREHESTAR EnWREE
AE X, Tel: (022)217-7169, Fax.: (022)263-9406, E-mail: hommadhiguchi.ecei.tohoku.ac. jp

1. Introduction ing arithmetic circuits using an evolutionary opti-

mization technigue called Evolutionary Graph Gen-

Arithmetic circuits are of major importance in
eration (EG(G) (see 1)-3) for eatlier discussions on

today’s computing and signal processing systems.
this topic). The key ideas of the proposed EGG

Numerous algorithms for arithmetic circuits have
system are to employ general graph structures as

been developed and implemented since the early
individuals and introduce new evolutionary opera-

days of digital computers, and newer ones are stil-
tions to manipulate the individual graph structures

1 being proposed. Most of the arithmetic circuits
directly without encoding them into other indirect

are designed by a designer who had trained in a
representations, such as bit strings (used in GA 4)]

particular way to understand the basic arithmetic
and trees (used in GP 5)) This makes possible the

algorithms. Even the state-of-the-art logic synthe- ‘
generation of the target structure efficiently.

sis tools can provide only limited capability to cre- ]
This paper discusses the synthesis of fast constant-

ate structural details of arithmetic circuits. Corre-
coefficient multipliers as a typical example of an

spondingly, recent high-level synthesis techniques
arithmetic design problem, since the high-speed mul-

tend to employ module libraries containing basic
tipliers with fixed coefficients are important in many

arithmetic functional units, which are usually de-
practical DSP applications 6)-8) For designing

signed in advance as essential resources. )
fast constant-coefficient multipliers, we assume the

This paper proposes a new approach to design-



use of special number representation called Signed-
Weight (SW) number system 9). The SW num-
ber system makes possible the construction of com-
pact counter-tree architecture for fast multiplica-
tion and multiply-add operation. At present, the
combination of CSD {Canonic Signed-Digit) encod-
ing technique 10} with the SW counter-tree archi-
tecture seems to provide the best possible approach
to the practical hardware implementation of fast
constant-coefficient multipliers. In this paper, we
show that the EGG system can naturally create the
optimal constant-coefficient multipliers, whose per-
formances are comparable (or sometimes superior)
to those of the multipliers designed by using CSD
and SW arithmetic algorithms.

2. EGG system for arithmetic

circuit synthesis

2.1 Basic concept of EGG

The Evolutionary Graph Generation (EGG) tech-
nique can be regarded as a unique variation of evo-
lutionary computation techniques W In general,
evolutionary methods mimic the process of natu-
ral evolution, the driving process for emergence of
complex structures well-adapted to the given envi-
ronment. The better an individual performs under
the conditions the greater is the chance for the in-
dividual to live for a longer while and generate off-
spring. As a result, the individuals are transformed
to the suitable forms on the designer’s defined con-
straint. In the EGG system, a graph representing a
specific circuit structure is modeled as an individu-
al, and a population of individual graphs is evolved
by evolutionary operations.

The EGG system employs cireuit graphs to rep-

resent circuit structures. A circuit graph G is de-
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Fig. 1 EGG system flow.

fined by
&= (N(G), P(GY), 1)

where N(G) is the set of nedes and D(G) is the
set of directed edges. Nodes are of two classes:
functional nodes and input/output nodes. Every
node has its own name, the function type and in-
put/output terminals. We assume that every di-
rected edge must connect one output terminal (of
a node} and one input terminal {of another node),
and that each terminal has one edge connection at
most. A circuit graph is said to he complete if all
the terminals have an edge connection. In order
to guarantee valid circuit structures, all the circuit
graphs used in the EGG system are complete cir-
cuit graphs.

Fig. 1 shows the overall procedure of the EGG
system. After the evolutionary run, every circuit
graph in the population is evaluated by a symbol-
ic model checking technique 3). Then, the circuit
graphs having higher scores are selected to perfor-
m wvariation operations, called crossover and muta-
tion, to generate offsprings from the parents. The
crossover operation, illustrated in Fig. 2 (a), re-

combines two parent graphs into two new graphs.
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Fig. 2
crossover, (b) mutation.

Examples of evolutionary operations: (a)

When a pair of parent graphs Gy and Gpp is se-
lected from the population, the eressover operation
determines a pair of subgraphs G, and G, to be
exchanged between the parents, and generates off-
springs by replacing the subgraph of one parent by
that of the other parent. In this process, the system
selects a subgraph Gpi' randomly from the moth-
er circuit graph Gy, and selects a compatible sub-
graph G2’ from the father circuit graph Gps, where
“compatible” means that the cut sets for these sub-
graphs contain the same number of edges for both
negative and positive directions. This ensures the
completeness of the generated offsprings. The mu-
tation operation, on the other hand, partially re-
constructs the given circuit graph. This operation
selects the subgraph randomly and replaces it with
a randomly generated subgraph that is compatible

with the original subgraph as shown in Fig. 2 (b}.

2.2 EGG system implementation

The EGG system was developed on the basis

of object-oriented programming approach in order

Terminal

Subgraph

IDManager

< Aggregation

: Application class
[1: Framework class

Fig. 3  Class diagram of EGG system.

to realize the highly flexible system that can be
applied to various different applications systemat-
ically. In practice, we implement the EGG system
based on a class relationship diagram as shown in
Fig. 3. Note that if objects of one class con-
tain objects of another, then the first class has
an“aggrepation” relationship with the second. The
EGGQ system consists of framework (or invariable)
classes and application (or variable) classes. The
Egg class controls the overall work-fiow and has
an aggregation relationship with the Population
class, which contains the basic individual model
defined by the Graph class. The Graph also ag-
gregates the Node, Subgraph and Fitness classes,
where the Node contains the Terminal class., These
seven classes forms the framework classes togeth-
er with the IDManager class which controls the ID
number of nodes.

The Operator and Evalnation classes are application-

specific classes. The Operator class holds miscella-

neous operations for handling circuit graphs. This
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class also performs the functional verification of in-
dividuals. The other application class Evaluation
gives “fitness” values to every individual. By mod-
ifying these application classes, the EGG system
can be easily applied to a wide variety of design

problems.

2.3 Arithmetic extension of EGG sys-
tem

The EGG system described in the above sub-
section can be applied to a general class of graph
synthesis problems. In the following, we describe
an extension of the EGG system so as to manip-
ulate arithmetic circuits efficiently. This extended
version of EGG is called “Arithmetic- EGG”, which
employs a higher level of abstraction for arithmetic
algorithms in order to reduce the size of search s-
pace. Arithmetic-EGQG interprets an individual eir-
cuit graph as a data-flow graph representing specif-
ic arithmetic computation process. A directed edge
in the data-flow graph represents the dependence
of operands. Also, two attributes are assigned to
each edge: (i} the type of number system used for
operand encoding and (i) the activated operand
digits. In Arithmetic-EGG, we assume the use of
positional number systems for operand representa-
tion.

A nede in Arithmetic-EGG’s data-flow graph,
on the other hand, represents a specific arithmetic
operation. Thus, the node itself has no circoit de-
tails at first. It can be transformed into a set of
bit-level circuit elements only when the attributes
of all the Iinput operands are determined. There-
fore, the actual interpretation of a node depends on
the overall structure of the data-flow graph. Each
node has a rule for generating the corresponding

bit-level circuit interpretation.

3. Synthesis of fast constant-

coeflicient multipliers

3.1 Motivation and method of exper-

iment

This section addresses ihe problem of synthesiz-
ing the architecture for multiplication in the form:
4 = Rz, where R is an integer coeflicient, and =
and ¢ are the integer input and output. The rea-
sons for choosing the constant-coefficient multipli-
er as a target function are as follows: (i) there are
many possible choices for the multiplier structure
for a specific coefficient R, and (i) the complexity
of the multiplier structure significantly varies with
the coefficient value K.

One of the most important techniques in constant-
coefficient multiplier design is to encode the target
coefficient R by the Canonic Signed-Digit (CSD)
number representation 10} The CSD number rep-
resentation is defined as a specific binary Signed-
Digit (5D} number representation that contains the
least number of non-zero digits. This encoding
technique makes possible to reduce the number of
partial products, which is equal to the number of
non-zero digits. The CSD encoding combined with
the fast partial product accumulation technique us-
ing parallel counter trees is widely used in practical
DSP applications, such as high-frequency FIR filter
architectures 6), 7.

As for compact counter tree design for partial
product accumulation, the authors’ group has re-
cently proposed the Signed- Weight (SW) arithmetic
8). The use of SW arithmetic instead of conven-
tional two’s complement arithmetic makes possi-
ble the construction of compact counter trees with-
out using irregular arithmetic operations, such as

sign extension and two’s complementation. This



Tahle 1 PFunctional nodes
Name Symbol Function Output Sign

3-input 2-output carry-free addition

3-input. 2-output carry-free addition
SW 3-2 counter 32 with 2-way branches Variable

3-input 2-output carry-free addition

with 3-way branches
Final stage adder FSA C.}a.rry~p-ropa.ga.te ?‘dd1t10n Invariable
with a bias canceling stage

1-bit. shifter 1-5 1-bit arithmetic shift Invariable
2-bit shifter 2-5 2-bit arithmetic shift Invariable
4-bit, shifter 4-5 4-bit arithmetic shift Invariable
Operand input IN Input signal Variable

property was confirmed in the Field-Prograrmable
Digital Filier (FPDF) architecture 9. As are
sult, the combination of the CSD encoding tech-
nique with SW counter trees seems to provide the
best possible approach to the practical hardware
implementation of fast constant-coefficient multi-
pliers at present. Thus, we have decided to com-
pare the multipliers generated by the Arithmetic-
EGG with the multipliers designed by hand em-
ploying the knowledge of the above techniques (CS-
D plus SW arithmetic). The result shows that the
Arithmetic-EGG can generate efficient multiplier
structures whose performance and complexity are
comparable with those designed by experienced de-
signers.

Table 1 shows the six functional nodes used in
our experiment. We employ SW 3-2 counters with
programmable output polarity. The use of SW
arithmetic makes possible to control the sign of in-
dividual data lines without using complicated two's
complement arithmetic operations. The overhead
of SW arithmetic is that an extra bias canceling
stage is required at the output of the counter tree.

We also allow the use of multiple-way (branched}

Table 2 Main parameter values
Population size 500
Max. num. of generations | 500
Max. num. of nodes 50
Crossover rate 0.7
Mutation rate 0.2
Operand wordlength 16

outputs for every SW 3-2 counter node in order to
reduce the complexity of SW counter tree by shar-
ing hardware resources.

The generated structures are evaluated by a
combination of two different evaluation function-
s, functionality and performance. The functional-
ity measure F evaluates the validity of the logical
function compared with the target function. The
performance measure P, on the other hand, is as-
sumed to be the product of circuit delay I3 and
number of inter-module interconnections A. First,
we describe the functionality measure F in detail.

Let R be the target coefficient given by the follow-
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Table 3 DA product of multipliers: (a) the multipliers generated by Arithmetic-EGG, (b) the CSD
multipliers.
' ‘ DA _ DA _ DA
Index | Coefficient @ ) Index | Coefficient @) ) Index | Coeflicient @) ]
i -2077 | 810 | 822 18 10075 | 1600 | 1824 35 17012 | 1324 | 1324
2 13492 | 2040 | 2250 19 2609 | 1280 | 1296 36 52| 358 | 370
3 -20844 | 1548 | 1600 20 -17127 | 1564 | 1596 37 -29824 | 771 792
4 27155 | 2335 | 2373 21 5755 | 1556 | 1612 38 30321 | 1616 | 1616
5 -17614 | 1556 | 1572 22 -1749 | 1528 | 1528 39 19878 § 2290 | 2290
6 -1353 | 1276 | 1276 23 6674 | 1336 | 1336 | 40 -32424 | 1320 | 1320
T 10304 | 406 | 408 24 -24570 | 882 | 912 41 15315 | 1580 | 1620
8 -14338 | 456 | 458 25 -26881 | 1368 | 1376 42 30248 | 1336 | 1336
9 18639 | 1604 | 1604 26 4134 | 1072 | 1092 43 11452 | 1512 | 1576
10 -27400 | 1312 | 1320 27 14577 | 1372 | 1372 44 -15697 | 1572 | 1588
11 -4444 | 1256 | 1276 28 -1257 | 1260 | 1276 45 26204 | 2080 | 2275
12 -28961 | 1360 | 1392 28 3461 | 1332 | 1332 46 -28097 | 1384 | 1384
13 28959 | 1360 | 1392 30 -8390 | 1288 | 1312 47 22732 | 2245 | 2288
14 3548 | 819 819 31 14993 | 1560 | 1596 48 26605 | 1668 | 1668
15 -9566 | 1524 | 1572 32 ~-18597 | 1596 | 1628 49 -24213 | 2290 { 2375
16 -28565 | 1664 | 1664 33 9953 | 1560 | 1612 50 -27804 | 1576 | 1584
17 4833 | 1316 | 1316 34 -14886 | 1336 | 1356
ing CSD representation: (0 £k £ |n|) is defined by
lI&ll-z ) 1 li&]1-1
R =2 +r 20+ 122+ ... = Z 7427 (2) e §(fs—rjk) m20
2 v - I E
1 [1R]]-1
where ||R|| denotes the length of the CSD represen- 00 Zﬂ §fmp—r)) m<,
3=

tation of the coefficient R and r; € {—1,0,1}. As
described in 3), the systemn checks the function of a
circuit graph by symbolic verification and obtains
the estimated coefficient R, which may be written
in the CSD notation as

[1RII-1

> H2(3)

=0

B =n2+72l 47224 =

The similarity between R and R are evaluated by
digit-coincidences for all the digit positions of the
given two strings. Using the difference of the string
lengths n (= [JR{| — [|Rl{), the correlation M of

the two coefficient strings at the shift amount &

where 6(x) is defined as

iz) = {

In the above calculation, we assume the values of

1 =0
0 z#0.

the undefined digit positions to be 0 for both coef-
ficient strings. Using this correlation function, the

functionality measure F is defined as
0k |
where 7 = 2 in this experiment.
On the other hand, the performance measure P

is defined as
Cz

P=oa

(5)



where D is the number of counter stages, and A is
the total number of inter-module interconnections
in the translated bit-level circuit. We use F + P as
a total fitness function, where the ratio Puar/Frax

is adjusted about 5/100 by tuning the constant Cs.

3.2 Experimental results

Table 2 shows major parameters of Arithmetic-

EGG used in this experiment. Table 3 shows the re-

sult of a set of evolutionary runs, in which Arithmetie-

EGG generates 50 multipliers whose coefficients are
ranging from —32424 to 30321. Total 50 coeflicients
are selected randomly as target values out of 16-bit
coefficients (—32767 ~ 32767). In Table 3, we show
the DA product (the number of counter stages x
the number of inter-module interconnections) of
the multipliers generated by Arithmetic-EGG (a)
and that of the corresponding CSD multipliers us-
ing the optimal Wallace tree architecture (b). From
this table, we can confirm that all the generated
solutions exhibit almost same level of performance
compared with the optimal CSD multipliers. We
can see some improvements in DA complexity for
evolved multipliers compared with th reference de-
signs.

Fig. 4 (a) is the best solution generated by
Arithmetic-EGG@ for the target coefficient R = 10075.
Fig. 4 (b), on the other hand, shows the con-
ventional CSD multiplier using Wallace tree archi-
tecture congisting of the least stages of SW 3-2
counters. Note that the solution (a) obtained by
Arithmetic-EGG employs an SW 3-2 counter with
two-way carry-save branches at the first stag;e, and
this hardware resource is shared by the successive
stages. Compared with the structure of Fig. 4 (b},
this feature significantly reduces the complexity of

the corresponding bit-level circuit configurations as

Fig. 4 Data-flow graphs for the multiplier of
R = 10075: {a) the best solution generated by
Arithmetic-EGG, (b) the CSD multiplier using
Wallace tree architecture.

shown in Fig. 5. Recently, some papers have p-
resented the method of reducing the complexity
of the constant-coefficient multipliers by inserting
such branches at adders 8)‘ 12). Note here that
the EGG system can derive the optimal structure
without using the knowledge of these technigues.
An important issue to be addressed for practical
application of EGG system is its computation time.
In the experiment of Table 3, the time for each
evolutionary run is about 3.6 hours on Sun Ultra
60 workstation {CPU: 360MHz, Memory: 1.15G-
B). In order to reduce the time for experiments of
EGG-based circuit synthesis, we have recently in-
troduced inexpensive COTS {Commercial Off-The-
Shelf) cluster computing technique. Fig. 6 shows
the 5-node Linux PC cluster designed for EGG sys-
tem. Each node of the cluster is Linux PC with
700MHz Pentium III and 1GB memory. The in-
terconnection network is a 100Base-TX Ethernet.
By employing the coarse-grained model 13), focus-
ing simply on the latest modifications introduced in

the original EGG system, we have implemented the
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Fig. 5 Multiplier configurations corresponding to the graphs of Fig. 4: (a) the best solution generated
by Arithmetic-EGG, (b) the CSD multiplier using Wallace tree architecture.



Interface (MPI). The detail of the parallel EGG

system will be reported in future papers.
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