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1. Introduction ‘

The use of larger tractors and the higher working speeds to sustain or increase productivity has been
the trand due to the changing situation of Japanese farming systems. It has been reported that higher
working speeds causes the deterioration of the tractor dynamics”, and violent bouncing phencmena
also arise when a small size tractor runs under certain road conditions, which may lead to fatal
accidents?®. ‘Therefore, the understanding of the dynamic behavior of the tractor is a fundamental
concem,

Although much -research has been done in these areas, almest all were conducted in the
conventional approach using spectrum analysis except Sakai. Sakai first infroduced the nonlinear
dynamics standpoint to tractor dynamics, clarified the chaotic vibration and showed the safety limits.
Especially, in the area of steering and handling, nonlinear behavior of the traclor plays an important role
on the stability of the tractor system.

The objectives of this paper are 1o investigate the dynamic stability, and chaotic behavior of a farm
tractor assumed as a rigid body on a wide range of forward speeds.

2, Methodelogy
2.1 Experimenta! set-up .

The tracter used was a pneumatic-tired John Deere model 2850D of 65 kW rating equipped with front
tires 13.6-24 and rear tires 16.9-34. The total mass was 3690 kg with 2280 kg on the rear axle. The
center of gravily was located 0.884 m in the front of the rear axle center and 6.933 m above the ground.
Tire inflation pressure was set at 0.20 MPa in the front and 0.15 MPa in the rear. The wheelbase of
the tractor was 2.29 m, )

The artificial test track composed of a series of angle irons of height 0.035 m was installed on a

. gravel farm road and the spacing (wavelangth) between the angle irons was set at 0.5 m with a total
lsngth of 25 m.

Tractor vibration was measured by two strain gage type linear accelerometers installed on the tractor
chassis. The accelerometers measured the vertical components of vibration and their locations are
shown in Fig. 1, Each acoelsrometer was labeled as A, and B and their capacities were 29 and 1g
respectively. The recording instruments included a 4-channel analog data recorder and strain amplifier
installed on the Tear right side fender of the tractor. The picked-up signal was processed with & low
pass filter of 30 Hz.
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Fig 1 Location of center of gravity of tractor and accelerometer

2.2 The frequency response tast '

A frequency response fest was conductad using an arificial test track as the source of excitation to
the tractor. in the experiment, all wheels run on the test track. In each run, the tractor forward speed
was kept constant, so that the excitation was periodic and continuous, and the forced oscillation was a
steady state. The forcing frequency f; of the forced vibration is expressed as fi=v/!, where v is the
forward speed and ! the wavelength. In the experiment, the forward speed Is chosen as the controlied
parameter and the speed was varied from 0.63~4.50 m/s increased at intervals of 0.10~0.20 m/s fora
total of 24 experimentat runs.

2.3 Chaos time series analysis

in the experimental time series analysis, only the frant A accelerometer signal were discussed. The
rear B signal has the same tendency with the front with a time lag of wbjv, where wb Is the wheelbase
and v is the forward speed. The amplitude of vibration of B is lower when compared to A.

The post transient phase was decided and the sampling time was varied in the range of 0.01~0.005 s,
in the sampling time of 0.01s the speed rangs was from 0.63~1.51 m/s and the total number of data
points was in the range of 800~1800. In the sampling time of 0.005s, the speed rarige was from
1.61~4,50 m/s and the total number of data points was in the range of 960~1700, In diagnosing the
types of vibrations, qualitative changes of the dynamics of the tractor due 1o the change in the forward
speed, was analysed by embedding the time series in a state space using the method of time delay.
A Poincare section was made by stroboscopic sampling of the ime series, which can be used fo
distinguish between various qualitative states of motion such as perodic, quasi-periodic, or chacs.
Quanlitative analysis, using the correlation dimension to identify the types of vibrations, and trend of
the largest Lyapunov expenents for deterministic chaos were also made.

(1) Quailitative analysls of the tractor vibrations
Phase portrait and Poincare sectlons

The phase portrait provides a spatial snapshot of the evolving dynamics of a nonlinear systermn as an
aid in the understanding of how parameter changes affect the systems behavior, It is particulary
useful in visualizing the dynamics of the system as the forward speed is changed. in the making of
the phase portrait, the current value of a time series is related to the preceding value of the same series
using a fixed delay time or lag.

A Poincare section 1s a sequence of pofnts in phase space. generated by the penetration of a
sontinuous evolution trajectory through a generalized surface or plans in the space®. It is constructed
by stroboscopic sarmpiing of the time series at a fixed-phase of the forcing function that is the artificial
test track. '



(2) Quantitative analysls of the tractor vibrations
Two widely used criteria on the quantitative analysis of the motion of a dynamical system, which will
either be chaotic or regular are the Lyapunov exponents and the correlation dimension,

{a) Corrslation dimension analysls
From the experimental time series data, computing the comelation dimension (D) is useful for
distinguishing deterministic and stochastic motion. For the attractor reconstructed in the m-dimensional

phase space by the method of time delay, the correlation integral C™(r)® Is defined for large N by,

cm(r)= lm—}:H(r 1X,-X,D ' (1)

1,J=0
1=

where, H is the Heaviside function, r the radius of an n-dimensional hypersphere centered on each
sampled point on the attractor trajectory, X, (I=1,2,3,...N) and X, are the other points on the attractor in
the vicinity of X. The term { X, - X ;| is calculated as a Euclidean distance in an m-dimensional

space. The correlation dimension D is computed as the slope (s) of each curve of log C™ (1) versus
logr.

(b) The Lyapuriov éxponent

Lyapunov exponents are the averdge exponential rates of drvergenca or convergence of nearby
orbits in phase space of a given continuous dynamical system in an m-dimensional phase space.
Thus, the exponents are related o the expanding and contracting nature of different directions in phase
space, A posiive Lyapunov exponent is defined t¢ be chaotic, a zero exponent would indicate a
marginally stable orbit, and a negative expanent would indicate periodic motion®.

(b} Frequency domaln analysls

Nonlinear resonance curve can identify at what particular frequency (speed) the tractor exhibits
violent vibration phenomenon. Such a curve is useful In determing the natural frequencies of the
tractor,

3. Results and Diecussioen
3.1 Chaoes time gerlag analysls
{1) The attractor reconstruction using the method of delay time

in the analysis of the experimenial time series obtained from dynamics of the tractor, the trajectory of
the post transient phase was analyzed as it approaches 1o its attractor. An aftractor is a set of points
in phase space that the nenlinear systemn approaches eventually starting from a set of points known as
the basin of attraction”. .

The method of reconstructing the attractor within an smbedding space of some suitable dimension m
is called the method of ime delay. From the ime series, the attractor is made using an appropriate
value of delay time 1. Different delay time of T/2, T/6 and T/4 were used for this purpose. The attractor
is first embedded in a fwo dimension. A more rigorous way to estimate the actual dimension of the
attractor using quantitative methods is presented later.

An example of the reconstruction of the attractor is shown in Fig. 2. Figure 2.1~2.4 shows the
phase portrait from the reconstructed time series data of speed 2.15 m/s with an embedding dimension
m=2. In Fig. 2.1, using a delay time of T/2, the attractor coordinates are formed from very closed points,

-hence there is a strong positive correfation and the attractor aligns fiself almost along the £—45°
dashed line.
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Figure 2. Attractor reconstruction of the time series data

However, from Fig. 2.2 and 2.4 shows three almost similar phase portraits using the deiay time of T/3,
T/4 and T/6 respectively. Here it is seen that as the time series points' used for the attractor
co-ordinates begin to separate and de-correlate, the aliractor opens up in phase space. In this case,
a visual inspeation of the phase portrait of the resuiting attractor which appears to give the minimum
spread out attractor™® or as open as possible is the delay time T/4 which is used in the attractor
reconstruction.

(2) Qualltative analysis
Phase porirait and Poincare section

The total number of experimental runs was 24. Therefore, there are 24 phase poriraits and 24
Poincare- sections. From these 24 -pairs of graphs, six sample pairs were chosen as the
representative.

Figure 3 shows the six sample palrs of phase poriraits and Paincare section of the tractor vibration.
The chosen speeds were 0.87 my/s, 1.51 m/s, 2.15 m/s, 2.88 my/s, 3.52 m/s and 4.32 m/s. )
From Fig. 3.1, complex dynamics in the speed 0.97 m/s was observed due to the complex trajectory of
the vibrations, and beiween 0,97 to 1,51 m/s (Fig. 3.1~3.2), a qualitative changed occurred due ta the
different shape of the trajectories, which can be seen, from these phase portraits.

4} v=2.BB m/s

X (@ +1)T4)

' {(n+1)Tr4)
» =

3

3y=2.15m/s P ]
=
g B 5T
& ELE,
= = st
:*-r - :E': o fi;-‘ &« T
"
l..—.38 -
0 X (4T X (T4}

Figure 3 Representative samples of (a-phase portrait and
(b) Poincare sections at different forward speeds



From Fig. 3.2~3.4, the almost efliptical trajectory in the speeds of 2.15 m/s and 2.88 m/s were

observed from the phase portrait. The Poincare section in Fig. 3.3(b} showed the points moving
around in an approximate eliipse curve in the stroboscopic plane indicated a clear gquasi-periodic
vibration. Increasing the speed further from 3.52~4.32 my/s (Fig. 3.5~3.6) showed a qualitative changed
from quasi-periodic to a complex vibration,
From Fig. 3, there are three types of qualitative dynamics. in the middle speed of 1.51 m/s to 2.15 m/s,
is a quasi-petiodic vibration. This is where the resonance frequencies of the tractor in the bounce and
pitch mode occurred in the frequency rangs of 3.2 Hz 4.3-4.8 Hz'™ respectively. In the lower spead
of 0.895 m/s, and in the higher speeds of 3.52 m/s and 4.32 m/s the types of vibrations could not be
determined using the phase portrait and Poincare section.

(3) Classlfication of the types of vibrations from the qualitative changes of the tractor dynamics
- Based from the difference or similarity of the phase portrait patterns, the types of vibrations were
classified according to the low, middle, and high speeds. In the low speed, the range was from
0.63-1.42 m/s. In the middle speed, the range was from 1.51 m/s-3.08 tm/s. In the high speed, the
range was from 3.32-4.52 m/s.

In order to further explain the reason for the difference or similarity of the phase portrait, the time
series and the frequency spectrum information were included. From Fig. 3, one speed each in the low,
middle, and high speeds were chosen, and these are 0.97 m/s, 2.15 m/s, and 4,32 m/s respectively.

In the low speed of 0.97 m/s, a sample time series data is shown in Fig. 4. From this figure, the
period of oscillation is 0.52 5, The frequency spectrum in Fig. 4b shows a fundarental forcing
frequency f;=2.0 Hz with other frequency influence, and dominant frequencies of 3.9 Hz and 5.9 Hz,
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Figure 4. Complex vibration in the low speed of v=0.97 m/s

These other frequencies were probabiy due to the significant influsnce of the frequency spectrum of
the gravet road where the angle irons were installed and tractor tire lugs. The resulting phase portrait
and Poincare section in Fig. 4c and 4d respectively, showed a complex vibration, which were seen as
scattered stroboscopic points in the Poincare’ section. However, the type of vibration could not be
determined using the phase portrait and Poincare section analysis.



In the high spead of 4.32 mys, a sample time series data is shown in Fig. 5. From Fig. 5(a}, the
pericd of oscillation is 0.12 5. The frequency spectrum in Fig. 5b showed a fundamental frequency
f,=8.6 Hz and its subharmonic frequency f,». Figure 5¢ and 5d shows the phase portrait and Poincare
section respectively, The complex vibration is probably due to the influence of the subharmonic
frequency fi that implied nonlinear vibration but the type of vibration couid not be diagnosed clearly
with the frequency informaticn only,
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Figure 5 Complex vibration in the high speed of v=4.32 m/s

On the other hand, tn the middle speed, a sample time series data of the vibration is shown in Fig. &.
The period of oscillation is 0.23 s. The frequency spectrum shown in Fig. b shows a dominant
fundamental frequercy f;=4.3 Hz and with a superharmonic frequency component of 2f; and the
influence of f=4.6 Hz. The presence of the other frequency f: whose ratio fo/f; is incommensurate
indicated a quasi-periodic vibration. Thus, aside from the phase porirait and Poincare section
informaticn, the frequency spectrum was also helpful in classifying the types of vibrations.

On the other hand, in the middle speed, a sample time series data of the vibration is shown in Fig. 6,
The period of oscillation is 0.23 s. The frequency spectrum shown in Fig. 6b shows a dominant
fundamental frequency f;=4.3 Hz and with a superhamonic frequency component of 2f; and the
influence of f;=4.6 Hz. The presence of the other frequency f> whose ratio f>/f; is incommensurate
indicated a quasi-periodic vibration. Thus, aside from the phase portrait and Poincare section
information, the frequency spectrum was also helpful in classifying the types of vibrations.

The above resuits show two classifications of vibrations. One group is classified as a complex
vibration that occurred in the low and high-speed range, and the group was classified as quasi-petiodic
vibration that eccurred in the middle speed range.
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(4) Quantitative analysis ‘

To diagnose the types of vibration in the low and high speeds that could not be determined using the
qualitative methods, a quantitative analysis was conducted using the comelation dimension analysis
and the Lyapunov exponent for the full range of the forward speed.

(a) Correlation dimension

The attractor reconstruction using the method of delay time was made using an embedding
dimension {m) of two. To determine the actual m to contain the attractor of the experimental ime series
a correlation dimension D for the reconstructed atfractor In embedding spaces of successively larger
dimensions was conducted, using an algorithm that computes the D.  The maximum m was set to 5.0
The radius {r) of the prohing hyper sphere was from 1~10 units.

An example of a correlation dimension plot using a numerical algorithm is shown in Fig. 7 where the
data was the time series at spsed of v=2,14 m/s. The atiractor was generated using N=1410C points.
From Fig. 7a, with increasing m from 1~5, the slope (3) steadily diverges with increasing values of r due
to the effect of noise. The noise is due to the nature of the input, the inherent characteristics of the
system and noise contributed by the measuring instruments that were present in the output signal.
Another factor is the effect of the computational noise'"” that arise due to round-off errors in the
numerical computations that were made.

Since the test track was installed on a farm gravel road, random nolse of the gravel road was present
in the output signal. Dynamical system noise or system nonlinearity such as the spring stifiness and
darmnping coefficients of the tractor tires are were also prasent in the output signal. The effect of the
measurement noise and computational noise were not included in the analysis.

The limiting slope (Ls) was approximated to be equatto 1.19. Figure 7{b} is then plotted using the s
versus log (r) where the curves converge at the limiting siope (encircled),  Figure 7(c) is then made
using the slope information with the increasing m, where the minimum saturation point was at m aqual
1o 3.0, which is the appropriate embedding dimension of the attractor.  Aside from the determination of



the embedding dimension, a torrelation dimension analysis was also made to determine the types of
vibrations in'the low and high speeds that could nct be determined using qualitative analysis that was
made in saction (3),
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Figure B shows the correlation dimension D versus the embedding dimension m in the low, high and
also in the middle speed. From Fig. 8(a), the steady increase of b as m was increased indicated that
the attractor was not contained even in the fifth dimension, This suggests that the attractor is In the
infinite dimension, which Is a random vibration. From Fig. 8{b), I has a value of 3.61 that indicated
chaatic vibration, and the atiractor was contained in an m equal to 4. In'Fig. 8{c), a D equal to 1.19
means quasi-pericdic vibration and it reached saturation at m equal to 3,
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(b) The Lyapunov exponent

Figure 9 shows the spectrum of the Lyapunov exponents (L) versus the forward speeds with the
equivalent forcing frequencies.  Spurious Lyapunov exponents in the low speed range of 0.63~1.42
m/s was observed which is dus to the significant influence of the gravel farm road in the experimental
data, therefore, it was not included. Convergence of the Lyapunov exponents was attained by varying
the attractor length scale and the constant propagation time (ref. 6). Starting from the middle speed
range of 1.51 m/s, the type of vibration is quasi-periodic. The largest Lyapunov exponent which is a
deterministic chaos'® oceurred at the frequency range of 7.0~8.0 Hz (speed range of 3.52~4.50 m/s).
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{5) ClassHications of the types of vibrations according to the quantitative analysls of the tractor
dynamics

Table 1 shows the classification of the types of vibrations using correlation dimension analysis and
Lyapunov exponent estimates of the stability and chaotic behavior of the tractor. In the speed range
of 0.63~1.42 mys is a random vibration with an attractor dimension of mors than 5. In the speed range
of 1.50~3.08 m/s is a guasi-periodic vibration and marginal stability of the tractor behavior and the
dimension of the atiractor 3. In the speed range of 3.32~-45 m/s is a chaotic vibration and the
dimension of the attractor is 4.

Table 1. Classification of the types of vibrations sceording to the forward speed

Speed Classification Speed range Types of vibrations Dimension of attractor

Low speed 0.63~1.42m/s| Random vibrations P

. Quasi-periodic vibrations m=3
Middle speed 151-308M/S- | and marginal stability

High speed 3.32~452mjs| Chaoticvibrations m=4

3.2 Frequency domain analysls uging the nonlinear resonance curve

Figure 10 shows the nonlinear resonance curve of the ‘h'actor vibrations, In the frequency of 3.2 Hz
{speed of 1.6 mys) is the bounce natural frequency, and in the frequency range of 4.2~48 Hz  (2.1-2.4
mys) is the pitch natural frequencies (ref. 10).
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Fig. 10 Nonlinear resonance curve of the front A of the tractor chassis

4, Conclusiens

The stability and chaatic behavior of a farm tractor assumed to be a rigid body was investigated from
the standpoint of nenlinear tractor dynamics.  In the experimental investigation, a frequency response
test was conducted, and the analysis was camied out in the time domain and frequency domain
analysis, In the fime domain analysis, qualitative changes of the dynamic behavior of the fractor
were analyzed using the phase portrait and Poincare section that identified the quasi-periodic
vibrations in the midkile speed range of 1.51 io 3.08 m/s. Quantitative analysis using the comrelation
dimension identified the random vibration In the low speed range of 0.63 o 1.42 m/s, and largest
Lyapunov exponents analysis identified the determinisfic chaotic vibrations in the high-speed range of
3.32-4.52 m/s. The tractor vibration resonance occurrad in the middle speed range. The following
conclusions can be drawn from the resuits obtained:
1. The effect of the gravel farm road produced random vibration that is significant in the low speed
range that resulted to spurious Lyapunov exponent estimates.
2. Marginal stability of the tractor occurred in the middle speed range, which is a quasiH -periodic
vibration where the nonlinear resonance of the tractor occurred.
4. The subharmonic frequency fy» that occurred at the higher speeds indicated chaofic vibrations of
the tractor
5. Nonlinear tractor dynamics route fo chaos was gquasi-periodic from the middie speed range to

chaos in the high-speed range.
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