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Abstract
stabilizing controllers: is presented by using the
coordinate-free approach. The parameterization of this
- paper is more intuitive than previous ones. The result in
this paper will not assume the existance of the coprime
factonzablhty and not employ the Youla—Kucera param-
eterization.

1 Introductmn

Once the existence of the doubly coprime factor-
ization comes to be knmown, it is easy to param-
eterize all stabilizing controllers by Youla-KuCera
parameterization[DEMS80, - RL84, Vid85, VSF82,
YJB76]. »

' On the other hand, some class of control systems

does not know whether or not a stabilizable plant in the

class always has its doubly coprime factorization. The
- multidimensional systems with structural stability is one
of such classes{Lin98, Lin99].

The objective of this paper is to present an alter-
native parameterization method of stabilizing conrollers
without the coprime factorizability. :

The approach we use in this paper is the coordinate-
free approach{SS92, Sul94, Sul98, MorOO Mor99a,
Mor99b, MorOlc, Mor01bj.

The coordinate-free approach is a factorization
approach without the coprime factorizability. It is
well known that the factorization approach to control
systems has the advantage that it embraces, within
a single framework, mumerous linear systems such
as continuous-time as well as discrete-time systems,
lumped as well as distributed systems, one-dimensional
as well as multidimensional systems, etc.[DLMS80,
VSF82]. Hence the result given in this paper will be
able to'a number of medels in addition to the multi-
dimensional systems. In factorization approach, when
problems such as feedback stabilization are studied, one
can focus on the key aspects of the problem under study
rather than be distracted by the special features of a par-
ticular class of linear systems. A transfer matrix of this
approach is considered as the ratio of two stable causal

An alternative parameterization method of

transfer matrices. For a long time, the theory of the fac-
torization approach had been founded on the coprime
factorizability of transfer matrices, which is satisfied by
transfer matrices over the principal ideal domains or the
Bézout domains. However it is known that there are
models such that some stabilizable plants do not have
coprime factorizations[Ana85]. Sule in [Sul94, Sul98}
has presented a theory of the feedback stabilization of
strictly causal plants for multi- mput multi-output trans-
fer matrices over commutative rings with some restric-
tions. This approach to the stabilization theory is called
“coordinate-free approach” in the sense that the coprime
factorizability of transfer matrices is not required. Re-
cently, Mori and Abe in [MAO1] have generalized his
theory over commutative rings under the assumption that
the plant is causal. They have introduced the notion of
the generalized elementary factor, which is a generaliza-
tion of the elementary factor introduced by Sule{Sul94],
and have given the necessary and sufficient condltlon of
the feedback stabilizability.

Since the stabilizing controllers are not unique in
general, the choice of the stabilizing controllers is im-
portant for the resulting closed loop. In the classi-
cal case, that is, in the case where there exist the
right-/left-coprime factorizations of the given plant,
the stabilizing controllers can be parameterized by
the method called *“Youla-parameterization”{DLMS80,
RL84, VSF82, YIB76] (also called Youla-KuCera-
parameterization). However, we do not know yet
whether or not there always exists right-/left-coprime
factorizations of stabilizable plants of multidimensional
systems{Lin98, Lin99, Lin00]. In this paper, we will
give a parameterization of the stabilizing controllers
without using the coprime factorizability of the plants.

2 Coordinate-Free Approach
First we briefly introduce the notion we use, that is, the
coordinate-free approach.

Sule in {Sul94, Sul98] presented a theory of the feed-
back stabilization of multi-input multi-output strictly
causal plants over commutative rings with some restric-
tions. This approach to the stabilization theory is called



“coordinate-free approach”{SS892] in the sense that the
coprime factorizability of transfer matrices is not re-
quired.

Let R denote an unspecified commutative ring. The
total ring of fractions of R is denoted by F(R); that is,
F(R) = {n/d|n,d € R, d: nonzerodivisor}.

We consider that the set of stable causal transfer
functions is a commutative ring. Throughout the pa-
per, the set of stable causal transfer functions is de-
noted by A. The total ring of fractions of A is de-
noted by F{A) or simply F; that is, F(A) = F =
{n/d|n,d € A, d: nonzerodivisor}. This is considered
as the set of all possible transfer functions. The causality
of transfer functions is an important physical constraint.
We employ, in this paper, the definition of the causality
from Vidyasagar et al.[VSF82, Definition 3.1}

Let Z be a prime ideal of .4 with Z # A such that Z
includes all zerodivisors. Define the subsets P and Pg
of F(A) as follows:

P {a/be Flae A, be A\Z},
Ps {afbe Fla€ Z, be A\Z}.

Then every transfer function in P (Ps) is called causal
(strictly causal). Analogously, if every entry of a trans-
fer matrix is in P (Ps), the transfer matrix is called
causal (strictly causal).

Matrices A and B over R are right- (left-)coprime

I

- over R if there exist matrices X and Y over R such that
XA+ YB = FE (AX + BY = F) holds. Further, an _

ordered pair (N, D) of matrices NV and D over R is said
to be a right-coprime factorization over R of P if (i) D
is nonsingular over R, (it) P = ND~! over F(R), and
(iii) N and D are right-coprime over R. As the paral-
lel notion, the left-coprime factorization over R of P is
defined analogously. '

‘Let M,(X) denote the R-module generated by

rows of a matrix X over R. Let X = AB~ =

~

B~'A be a matrix over F(R), where A B, 4, B
are matrices over R. It is known that M, ([ 4’ BtH
(M ({A B]")) is unique up to an isomorphism with
respect to any choice of fractions AB~! of X (B~ !4
of X) (Lemma2.1 of[MAOL]). Therefore, for a ma-
trix X over R, we denote by Tx,r and Wx r the mod-
ules M, ([A* B']") and M,([A ~ BY"), respectively.

The stabilization problem considered in this paper
follows that of Sule in [Sul94], and Mori and Abe
in [MAO1], who consider the feedback system Y. [Vid85,
Ch.5, Figure 5.1} as in Figure 1.
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Figure 1: Feedback system 2.

For further details the reader is referred to [MAOI,
Sul94, Vid85}. Throughout the paper, the plant we con-
sider has m inputs and n outputs, and its transfer ma-
trix, which is also called a plant itself simply, is denoted
by P and belongs to F™*™. We can always represent P

in the form of a fraction P = ND~* (P = DIN),
where N € Anrxm (f\} € A™) and D € AmXm
(D € A™*") with nonsingular D (D).

For P ¢ F™™ agnd C € F™< " a matrix
H(P,(C) € Flmin)x(m+n) jq defined as

(En+ PC)1
C(E, + PC)™!

H(F.C)= (Ep + CP)~1

~ provided that det(E, + PC) is a nonzerodivisor of .A.

This H (P C) is the transfer matrix from {u} wu4]" to
(e} 92] of the feedback system 2. If (i) det(E +
PCY) is a nonzerodivisor of A and (ii) H(P,C) €
Almin)x(m+n) then we say that the plant P is stabi-
lizable, P is stabilized by C, and C is a stabilizing con-
trollerof P.

Another matrix W{(P,C) € (F)m+n provided that

det{E,, + PC) is a nonzerodivisor of A is also defined
by

C(E, + PC)~!
PC(E, + PC)™}

—~CP(Ep + CP)™

P(Ey, + CP)™!
2)

which 15 the transfer matrix from [u! ug]t to

* of the feedback system ¥ It is well known
thdt HfP C) is over A if and only if W(P,C) is over

W(P,C) = [

In the definition above, we do not mention the
causality of the stabilizing controller. However, it is
known that if a causal plant is stabilizable, there exists
a causal stabilizing controller of the plantfMAO1].

The outline of new parameterization is as follows.
Let P be a causal and stabilizable plant (P € P"*™),
Hence there exists its stabilizing controller C' of F™*",
Then Diag(P, C) has a doubly coprime factorization.
Hence we can parameterize the stabilizing controllers
of the plant Diag(P, C) by the Youla-Kulera parame-
terization. From the stabilizing controllers of the plant
Diag(P, C), we will obtain all the stabilizing controllers
of the original plant P. Thus we show in Section 4e that
a stabilized closed feedback system has the doubly co-
prime factorizability because this will lead to give the
parameterization of the stabilizing controllers. Using
this, we will present the method to parameterize all sta-
bilizing controllers in Section 5.

3 Previous Result

The parameterization of stabilizing controllers that does
not require the coprime factorizability of the plant were
originally given in {Mor99b, Mor0O1b].



Here we briefly outline this parameterization. Let
H (P, C) denote the transfer matrix of the standard feed-
back system defined as

(E, + PC)"!

—P(Ey, + CP)™} }
C(En + PC)™! ’

HPC) [ (Em+CP)!
where P and C are plant and controller, and E, the iden-
tity matrix of size « (n and n denotes the number of in-
puts and outputs, respectively, of P). We consider the
set H of H(P,C)’s with all stabilizing controllers C
rather than the set of all stabilizing controllers itself.
‘We have characterized this H by one parameter matrix.
Once having the set 7, we can easily obtain the param-
eterization of the stabilizing controllers.

This set H and all stabilizing controllers are ob-

“tained as in the following way. Let Hy be H(P, Cy),
where C) is a stabilizing controller of P. Let Q(Q) be a
matrix defined as follows:

| Ey  Onxm
@ = - | 5 O ) ®)
On n Oﬂ m 4
Q(Ho — [O i EX ])+Ha

with a stable caunsal and square matrix Q of size m + n,

where O, denotes zero matrix of size x X y. Then we
have the identity

= {Q(Q) 1 Qis stable causal and Q(Q) is nonsingular}
4

(Theorems 4.2 and 4.3 of [Mor01b}). Hence any stabi-
lizing controller has the following form: ‘

Eﬂ.
], -5

oy
~[Omsn Bl Q) lomxn

provided that Q(Q) is nonsingular. This is a parameter-
ization of stabilizing controllers by parameter matrix ¢
without the coprime factorizability of the plant.

4 Doubly Coprime Factorizability of

the Stabilized Closed Feedback Sys-
-~ tem R

We state here the key results of the new parameteriza-

tion. Recall first the following resultfMAOT].

Proposition 4.1 (Proposition4.1 of [MAO1]) Suppose
that P and C are matrices over F. Suppose further

that det(E, + PC) is a unit off Then Tgpcya ~

Tea ® To,a holds.

If C is a stabilizing controller of P, then the matrix
H(P,CY) is over A so that Ty(p,cy, 4 is free. Thus by
Proposition4.1, Tp 4 ® T, 4 is also free. This leads that
the plant Diag(P, C) has a right coprime factorization
over .A. From this observation, we give the following
proposition.

Proposition 4.2 Suppose that Cy is a stabilizing con-
troller of the plant P. Then P, := Diag{(Cy, P) has
both right- and left-coprime factorizations over A.

To prove this proposition, we use the following
lemma.

Lemma 4.1 Suppose that Cy is a stabilizing controller
of the plant P, Then

GI::[ 0 En]

is a stabilizing controller of Py := Diag(Cy, P).
Proof. One can check straightforwardly that H (P, Cy)

is over .A. 0

Proof of Proposition4.2. Let 01 be as in Lemmad4.1.
Let

Nl = {Vl, (6)
[ Co(Bn+PCy)™t ~CoP(Em+ CoP)7}
T PCy(Ep + PCy)™Y P(Ep + CoP)™t |
i (En+PCg)—1 ' »P(Em+CoP)“1
Dy = : i : A7)
_CQ(En + PCO) (E + C()P)
5 L i (Em +COP)~1 _—Co(E +P00) } (8)
VA P(E, +CoP)t (En + PGyt
.o~ 0O E,
n=ti=| 5 ol ©
i E, O]
Xy ._Xl = [0 Em] (10)_

Then P, = NiD{' = D1 !N} hold. Further ¥} N; +
X1D1 = Emin, MY + D1X1 = Epn hold. Hence
(Ny,Dy) and (Dl, NI) are right- and left-coprime fac-
torizations of P, respectively. a

As a derivative of Proposition4.2, we have the fol-
lowing proposition, the proof of which is omitted.
Proposition 4.3 A plant P € P™ ™ is stabilizable if
and only if there exists a transfer function F € F'xa!

with m' < m and n' < n such that plant Diag(F, P)
has both right- and left-coprime factorizations over A.

5 New Parameterization of Stabilizing

Controllers
Now we give a parameterization of stabilizing con-
trollers. Let P be a plant and Cy a stabilizing controller.
Consider a new plant Py := Diag(P, Cyp) as shown in
(a) of Figure 2. By Proposition4.2, P; both right- and
left-coprime factorizations over 4. We still use symbols



in the equations (6) to (10). Then all stabilizing con-
trollers, say Cj, of the plant P is parameterized with
parameter matrix R, S € (A)™*" as follows:

— RN;)7H(Y; + RDy)
- D1S)" L.

G = (X
= (Y1 +NS)(Xy

D
(12)

Then the block diagram of the feedback system consist-
ing of P; and (] is given in (b) of Figure2. As in the
figure, Cy is decomposed as follows:

[C'm 0112] —C
- L1
Ci1 Ci
Consider now the following matrix
{Omxn Em Ome Om)(njl
O‘nxn Onxm OnxmA En
Oan Omxm
E, O
xW (P, C " X (13)
PO Oren O
Omxn Em

Note that this matrix is the transfer matrix from
{’ulg U929 ]t to [y12 ygg]t in (¢) of Figure 2. Let

Crew = C122 — C121(Em + CoC111) " CoClaz.

Using this Onew, (¢) of Figure 2 can be rewritten as (d)
of the figure. This is a feedback system of P and Ciew-
Hence CNew is a new stabilizing controller of the plant
P. In addition, the matrix of (13) can ‘be written as
W (P, Crew)-

Recall here that Cew depends on either the param-
eter matrix R in (11) or § in (12). Without loss of the
generality, we use the parameter matrix R hereafter. Us-
ing R, we further calculate (13). Then we have

(13) = "V(P:iCNeW)
= W(P,Cy)
+(W(PCO)+[3 %])
XR(-=W (P, Cy) + [EO g]).(m)

We now have the main result of t}us paper.

Theorem 5.1 Suppose that Cy is a stabilizing controller
of the plant P. Let :

[Wu le] = (W(P,Cp) + [g Eén})

15
Wo Wopy <2
X R(=W(P,Cq) + [

£ o

where Wiy € A™" Wip € (A)m, War € (A)n,
Wiy € A™X™ and R is a parameter matrix € (A)™",

Then all stabilizing controller of the plant P is given by
the following matrix

Wi (B, — Way) ™ (16)

with (E, — Wo;) nonsingular, where R in (15) is a pa-
rameter mairix.

Proof. From the previous discussion of this paper, we
have known that the transfer matrix of (16) is a stabiliz-
ing controller. Thus we will show only that any stabiliz-
ing controller of the plant can have the form of (16).
Due to the space limitation, only the outline of the
remaining proof is shown. The method of the proof is
analogous to the proof of Theorem 3.3 of [MAO1]. In
the case where A is a local ring, there always exists a
doubly coprime factorization of any stabilizable plant.
Thus we use local-global principle{Kun85]. Let A, de-
note a local ring of A at a prime ideal p. For each local
ring Ay, (14) still holds. Patching them, we see that (14)
holds over A. From this, we obtain a stabilizing con-
troller of the form of (16). o

We now have a new parameterization of the stabilizing
controllers. It can be checked that the new parameteriza-
tion we have obtained is equivalent to the previous result
given in Section 3. This is done by the translation of the
matrices of (1) and (2), but the details are omitted.

6 Related Works

Recently the author in [Mor(01a] has given the param-
eterization method of all stabilizing controllers which
requires only one of right-/left-coprime factorizations.
The relationship between the results of this paper
and [MorO1a] should be investigated. The author con-
siders that Proposition 4.3 may have some relation to the
resuit of {Mor01a].

Also the author now investigates the method to re-
duce the number of parameters.of the parameterization
of all stabilizing controllers. This result wﬂl report in
another materials. :
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{(a) New plant P, := Diag(P, Cy).
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_ (b) New plant P; and its stabilizing controller C}.
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(c) Relocating the components of P and C}.
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(d) Original plant P and its newly obtained stabilizing controller Cney -

Figure 2: Construction of a stabilizing controller of the plant.



