複数電源電圧を用いた低消費電力VLSIプロセッサの ハイレベルシンセシス

High-Level Synthesis for Low Power VLSI Processors Using Multiple Supply Voltages

青山哲也,張山昌論,亀山充隆

Tetsuya Aoyama , Masanori Hariyama , Michitaka Kameyama

東北大学情報科学研究科

Graduate School of Information Sciences Tohoku University

キーワード: ハイレベルシンセシス (High-Level Synthesis),複数電源電圧 (Multiple Supply Voltages),消費エ ネルギー最小化 (Energy Consumption Minimization),遺伝的アルゴリズム (Genetic Algorithm)

連絡先: 〒980-8579 仙台市青葉区荒巻字青葉05 東北大学大学院情報科学研究科亀山研究室 青山 哲也, Tel.: (022)217-7155, Fax.: (022)263-9167, E-mail: aoyama@kameyama.ecei.tohoku.ac.jp

1. まえがき

近年,VLSIプロセッサの動作周波数・集積度の 向上に伴い,消費電力の増大が深刻な問題となっ ている^{1,2)}.

消費電力の増大が引き起こす問題として,以下 の3つが考えられる.まず,熱の問題である.VLSI プロセッサのパッケージには,放熱の限界があるた め,発熱がトランジスタの集積度に限界を与える ということである.また,携帯機器などのような バッテリー駆動デバイスや無線通信システム等に おけるバッテリーライフの短縮という問題がある. さらに,VLSIプロセッサの信頼性の問題がある.

しかしながら,現在,消費電力に着目した上位 レベルの系統的なVLSIプロセッサの構成理論と, その自動設計法がほとんど報告されていない.そ こで,本稿では,VLSIプロセッサの低消費電力化 のための最適設計 (ハイレベルシンセシス^{3,4)})を 提案している.

最適設計とは,制約条件を処理時間及びチップ 面積とし,平均消費電力(以下では,消費エネル ギー)を目的関数としたときの最小化問題とする.

消費エネルギーを削減する最も効果的な方法は, 電源電圧の低減である.これは,消費エネルギー が電源電圧の2乗に比例するためである.しかし ながら,電源電圧の低減は,同時に遅延時間の増 大につながる.従って,遅延時間を増大させずに 消費エネルギーを削減することが重要となる.

このような問題を解決する方法として複数電源 電圧を用いる方法がある.これは,クリティカル パス上の演算には高い電源電圧を(要求される処 理時間制約を満たすため),非クリティカルパス上 の演算には低い電源電圧を(消費エネルギーを削減 するため)割り当てるという方法である.Fig.1 は, 演算 O_2 , O_3 に低い電源電圧 V'_{dd} を割り当て,そ の他の演算には V_{dd} を割り当てた例である.例え ば, $V'_{dd} = V_{dd}/2$ のとき,消費エネルギーは 70 % に削減される.このように,遅延時間を増大させ ることなく,消費エネルギーを削減することが可 能となる.

Fig. 1 消費エネルギー削減の概念

本稿では,専用プロセッサの設計を前提として おり,アプリケーションのアルゴリズムがデータ フローグラフ (DFG) として与えられたとき,並列 構造VLSIプロセッサのアーキテクチャモデルを用 いて,処理時間及びチップ面積制約下で消費エネ ルギーを最小とするスケジューリング・アロケー ションを提案する.

消費エネルギー最小化のために,消費エネルギー 最小化問題を整数計画問題として定式化する.演 算ノードの開始ステップの決定(スケジューリン グ)と演算ノードを実行する演算器の決定(アロ ケーション)の可能な組み合わせに対し,総当り的 に消費エネルギーの評価を行えば,一応解は求め られる.しかし,探索空間が膨大となり,大規模 な問題に応用することは困難である.そこで,本 稿では,効率的な探索アルゴリズムである遺伝的 アルゴリズム^{4,5)}を適用した.探索法について考 察した結果を述べる.

消費エネルギー最小化問題の 定式化

2.1 問題設定

VLSIプロセッサの動作仕様は, Fig.2 に示すよ うな DFG で与えられるとする. DFG は有効グラ フG(O|A)で, O はノードの集合, A はアークの 集合とする. 各ノード $O_i \in O$ は演算を示し, 各 アーク $A_i \in A$ はノードの依存関係を示す

Fig. 2 データフローグラフ (DFG)

Fig.3 にアーキテクチャモデルを示す.相互結合 網は多重バス方式に基づいており,必要十分な本 数のバスを用いることができる.これにより,任 意のモジュール間で任意の並列度のデータ転送を 行え,種々のパイプライン・空間的並列構造を実 現できる.

Functional Unit (以降では,演算器)は,Table 1 のような演算器ライブラリで与えられ,種々の演 算タイプ,電源電圧の演算器を用意する.ここで, DFG の各ノードにどの演算器を割り当てるかを 決定すること (アロケーション)が消費エネルギー 最小化問題の自由度となる.

また,Gated-Clock を採用することにより,演 算器の非動作時における入力信号をカットするこ とができる.このため,DFG 一連の処理により消 費されるエネルギー量を目的関数とすると,演算 器の動作時に消費されるエネルギーの総和の最小 化を求めることになる.

自由度は,アロケーションとスケジューリング である.スケジューリングとは,DFGの各ノード の開始ステップを決定することである.アロケー ションを決定することは,ノードの演算終了時間

Fig. 3 アーキテクチャモデル

Table 1 演算器ライブラリ

	Functional Unit	Delay	Area (normalized)	Energy (normalized)
F1	ADD(5V)	1 step	1	2
F2	ADD(3V)	2 step	1	1
F3	MUL(5V)	2 step	8	6
F4	MUL(3V)	4 step	8	3

を決定することに対応するため,スケジューリン グに対して影響を与える.Fig.4 は,ノード O₁ の アロケーションを F1 から F2 へ変化させること により,O₂ のスケジューリングの可能範囲が変化 することを示している.同様に,スケジューリン グもアロケーションの自由度に影響を与えること から,スケジューリングとアロケーションは,両 者を統合して議論することが重要となる.

Fig. 4 アロケーションのスケジューリングに対 する影響

また,与えられる DFG の処理のステップ数を処 理時間制約以内となるように設計すること,並列 に用意する演算器の数をチップ面積制約に対応さ せて設計することを考える.このように,処理時 間及びチップ面積制約を考慮することにより,実 用的な問題設定となり得る.

消費エネルギー最小化問題を以下のように設定

する.VLSI プロセッサの動作仕様として DFG,演 算器ライブラリが与えられたとき,処理時間及び チップ面積制約下で消費エネルギーが最小となる スケジューリング・アロケーションを求める.

2.2 整数計画問題へのマッピング

消費エネルギー最小化問題が,スケジューリン グとアロケーションを統合した問題に帰着可能で あるということに着目し,整数計画問題として定 式化する.

はじめに,目的関数の定式化を行う.最小化す るエネルギーを各演算ノードで消費されるエネル ギーの総和と考える.演算ノード *O_i* の実行によ り消費されるエネルギーを *E_i*,演算ノードの総数 を *N* とすると,以下のように表せる.

$$\sum_{0 \le i \le N} E_i \tag{1}$$

ここで, E_i は Table 1 の演算器ライブラリから与 えられる.

次に,自由度の領域,自由度に対応する変数の 定義をする.設定された処理時間制約に対して, DFGの各演算ノードは,時間的自由度を持つ.例 えば,Table 1 の演算器ライブラリを用い,Fig.2 の DFG を 5ステップで実行すると仮定した場合, 各ノードの開始ステップとして可能なステップの 範囲は Fig.5 のように表される.

Fig. 5 各ノードの可能なスケジューリングの範囲

このような , ノード O_i の開始ステップとして 可能なステップの集合を $mrange(O_i)$ とし , 以下 のように定義する.

 $mrange(O_i) = \{S_j | B_i \le j \le L_i\}$

ここで, S_j はステップ番号jを表し, $B_i(L_i)$ はノード O_i 開始ステップとして可能な最も早い(遅い)ステップ番号を表す.これらは,一般にASAPとALAPから求められる.例えば,Fig.5のノードO3では, $B_3 = 1, L_3 = 4$ であるので, $mrange(O_3) = {S_j | 1 \le j \le 4}$ と表せる.

同様に, DFG の各ノードを実行可能な演算器に も自由度が存在する.ノード *O_i* を実行可能な演 算器は,ノードと同一演算タイプの演算器であり, その集合を *fu*(*O_i*) とし,以下のように定義する.

 $fu(O_i) = \{F_j \mid (演算器F_jの演算タイプ)$ = (ノード O_i の演算タイプ)}

ここで, F_j は,演算番号jを表す.例えば,Fig.2の ノードO1は乗算なので, $fu(O1) = \{F_j | j = 3, 4\}$ と表せる.

各ノードの実行開始ステップを決定するため, $mrange(O_i)$ で与えられた各ステップに対応する 変数 x_{ij} を割り当てる.変数 x_{ij} は,スケジューリ ングに対応し,以下のように定義する.

$$x_{ij} = \begin{cases} 1 : J - \mathsf{F}O_i$$
の実行開始ステップが
ステップ S_j のとき
0 : その他

例えば, Fig.5 のノード O3 については, mrange(O3)= $\{S_j | 1 \le j \le 4\}$ であるので, $x_{31}, x_{32}, x_{33}, x_{34}$ が mrange(O3) の各ステップに割り当てられる.

同様に,各ノードを実行する演算器を決定する ため,fu(O_i)で与えられた各演算器に対応する変 数 y_{ij}を割り当てる.変数 y_{ij}は,アロケーション に対応し,以下のように定義する.

$$y_{ij} = \begin{cases} 1 : J - FO_i$$
を実行する演算器が演
算器 F_j のとき
0 : その他

例えば , Fig.2 のノード O1 については , fu(O1) = $\{F_j | j = 3, 4\}$ であるので , y_{13}, y_{14} が fu(O1) の各 演算器に割り当てられる . 最後に,制約条件を定式化する.ただし,各変数,定数は以下のように与えられる.

- *A*: チップ面積制約
- *K*: 使用可能な演算器の個数
- A_{F_i} : 演算器 F_i の面積
- D_{F_i} : 演算器 F_i の遅延時間
- N_{F_i} : 演算器 F_i の個数

制約条件1: ノードの実行範囲に関する制約

ノード O_i の実行開始ステップは $mrange(O_i)$ の 範囲内でなければならない.また,全ての演算の 実行開始ステップは可能なステップのうち1個であ るため, $mrange(O_i)$ に割り当てられた x_{ij} の合 計は 1 である.

$$\sum_{B_i \le j \le L_i} x_{ij} = 1 \tag{2}$$

制約条件2: ノードの演算器割り当てに関する制約 ノード *O_i* を実行する演算器は *fu*(*O_i*) の範囲内 でなければならない.また,全ての演算に対して 割り当て可能な演算器は1個であるため,*fu*(*O_i*) に割り当てられた *y_{ij}* の合計は1 である.

$$\sum_{F_j \in fu(O_i)} y_{ij} = 1 \tag{3}$$

制約条件3: ノード間の依存関係に関する制約 ノード *O_i* の出力がノード *O_j* の入力となってい る場合,ノード *O_i* の演算が終わった後にノード *O_i* の演算が実行されなければならない.

$$\sum_{B_i \leq k \leq L_i} (k \times x_{ik}) + \sum_{F_m \in fu(O_i)} (D_{F_m} \times y_{im})$$
$$\leq \sum_{B_j \leq l \leq L_j} (l \times x_{jl}) \qquad (4)$$

制約条件4: チップ面積に関する制約 演算器の占める面積の合計は,制約条件として 与えられるチップ面積 A を越えてはならない.

$$\sum_{1 \le i \le K} (A_{F_i} \times N_{F_i}) \le A \tag{5}$$

式(2)-(5)の制約条件下で式(1)を最小化する x_{ij}, y_{ij}を求めることにより,消費エネルギーを最小と

– 4 –

するスケジューリング, アロケーションが決定される.

整数計画問題は探索空間が膨大であり,大規模 な問題を応用することが困難である.そこで次節 において,効率的な探索アルゴリズムである遺伝 的アルゴリズムに,消費エネルギー最小化問題を マッピングする.

3. 遺伝的アルゴリズムの適用

3.1 遺伝的アルゴリズムの処理フローと 遺伝子表現

遺伝的アルゴリズムの処理フローを Fig.6 に示 す.その概要は,初期個体群を生成し,以下の step1 から step3 の操作を,終了条件が満足するまで繰 り返す処理である.

step1: 各個体の適応度の評価

step2: 適応度に基づく個体群の選択

step3: 選択された個体群の交叉・突然変異によ る次世代の生成

Fig. 6 遺伝的アルゴリズムの処理フロー

遺伝子の表現について, Fig.7 を用いて説明す る.Fig.7 の DFG はスケジューリングとアロケー ションが決定している.例えば, Parent1 のノー ド *O*₁ のスケジューリングは S1 であり, アロケー ションは F4 である.これらの DFG を Table 2 の ように遺伝子の列で表現する.遺伝子には,ノー ド番号の順にスケジューリングとアロケーション の情報が組み込まれており,消費エネルギー最小 化問題に必要な情報を有している.

Fig. 7 スケジューリングとアロケーション例 (左: Parent1,右: Parent2)

	Table 2	Fig.7	ወ DFG	の遺伝子表現
--	---------	-------	-------	--------

	C	01	0)2	03		04		05		06	
Parent1	S1	F4	S2	F3	S4	F3	S3	F2	S5	F1	S 6	F1
Parent2	S3	F3	S2	F4	S 1	F4	S4	F1	S4	F1	S5	F1

3.2 致死遺伝子の発生を抑制するグラフ 構造に基づく交叉

一般的な交叉である一点交叉について説明する. 一点交叉とは,遺伝子の列を任意の交叉点で2つ に分割し,それらを交換するという方法である. Table 3 は,Table 2 の遺伝子を用いて,ノード *O*₃ と*O*₄ の間を交叉点とし,一点交叉した例である. この方法は,DFG のグラフ構造を考慮することな く,遺伝子レベルの操作により次世代を生成する ため,致死遺伝子を発生する確率が非常に高くな る(Fig.8).このような致死遺伝子の発生は,探索 を非効率的にするため,可能な限り発生させない ことが重要となる.

 Table 3 Table 2 の遺伝子の一点交叉により生成

 された遺伝子

	C	01	0	02	C)3	0	4	C)5	0	6
Offspring1	S3	F3	S2	F4	S1	F4	S3	F2	S5	F1	S 6	F1
Offspring2	S1	F4	S2	F3	S4	F3	S4	F1	S4	F1	S5	F1

致死遺伝子の発生を抑制するために,グラフ理 論のカットセットに着目した交叉について述べる.

Fig. 8 Table 3 の遺伝子表現の DFG 表現 (左: Offspring1,右: Offspring2)

Fig.9 は連結グラフである.点線で示した辺 wy, xz を除くと,連結グラフが非連結となる.このよ うに,連結グラフを非連結にする辺集合で,その 集合に属する辺の幾つか(全部ではない)を除い ても連結グラフは非連結にならないという性質を 持っているものをカットセットと呼ぶ.Fig.9 のグ ラフにおいて,wy,xz,xw を除くと非連結となる が,この辺集合は,先に述べた性質を満足してい ないため,カットセットではない.

ここで, DFG のグラフ構造に着目し, カットセッ トでグラフを二つのグラフに分割し, それらを交 換するという交叉を提案する. Fig.10 は, Fig.7 の 二つの DFG の交叉により生成された DFG であ リ, 交差点はノード *O*4 とノード *O*6 の間の辺 (カッ トセット)である.カットセットにより分割された 二つのグラフ内において, ノードの依存関係が保 持されるため,本提案の交叉を用いることにより, 致死遺伝子の発生が抑制される.

Fig. 9 連結グラフのカットセット

 Fig. 10
 グラフ構造に着目した交叉により生成し

 た遺伝子の DFG 表現

3.3 遺伝的アルゴリズムと局所探索法の ハイブリッド化

遺伝的アルゴリズムは,遺伝的操作(交叉,突然 変異)に基づいた探索法であるため,大局的な探 索には非常に効率的である半面,良い解付近での 系統的な探索が難しい.一方,局所探索法は,暫 定解の近傍を系統的に探索するのに優れている. この二つの探索法を組み合わせることにより,互 いの長所を合わせた効率の良いアルゴリズムを実 現する.

本アルゴリズムの概要を Fig.11 に示す.遺伝的 アルゴリズムの遺伝的操作により生成された個体 に対し,局所探索法を適用することで,大局的な 探索,系統的な局所探索を行うことができ,探索 が効率的となる.

Fig. 11 遺伝的アルゴリズムと局所探索法のハイ ブリッド化

次に,消費エネルギー最小化問題における局所 探索法について Fig.12 を用いて説明する.局所探 索は全てのノードに対して行うが, Fig.12 の左図 はノード O₁ を選択したときの例である.前提条 件として,全てのノードのスケジューリング・ア ロケーションが決定している.このとき,ノード O₁ 以外のノードに関しては全て固定し,ノード O₁ のみの自由度について総当り的に探索する(局 所探索).ここで,O₁ 以外のノードは固定してい るため,探索すべき組み合わせ数は数通りしかな く,総当り探索でも十分である.ノード O₁ に関 して,局所探索を行った結果が Fig.12 の右図であ り,ノード O₁ の電源電圧が削減されており,消 費エネルギーが削減している.つまり,局所探索 により,解が改善されている.

Fig. 12 **ノード** *O*₁ の局所探索 (左:初期条件, 右:改善例)

3.4 提案手法による解の評価

まず, Fig.13 の左図の DFG, Table 1 の演算 器ライプラリを用いて解の評価を行った.結果を Table 4 の上段に示す.処理時間及びチップ面積制 約下において,単一電源電圧(5V)と複数電源電 圧(5V, 3V)により消費されるエネルギーを比較 し,その削減率を示した.Exercise の括弧内の数 字は,DFG のノード数を示す.処理時間制約を 8, 9,10step と,変化させて評価を行ったところ,い ずれの場合も複数電源電圧を用いたときの方が, 消費エネルギーは小さいという結果を得た.また, 処理時間制約に自由度が大きいほど,消費エネル ギーが削減されるという結果を得た.Fig.13 の右 図は,処理時間制約が 8step のときの解である.

次に,総当り探索では実用的な時間で解を求めることが困難な5次楕円フィルタに関して,評価を

行った.結果を Table 4 の下段に示す.同様に複 数電源電圧を用いることにより,消費エネルギー が削減されるという結果を得た.また,AMD の Athlon 1GHz で計算したところ,約30秒程度の計 算時間で解を求めることができた.

Fig. 13 評価用 DFG (左図) と,処理時間制約が 8step のときの解(右図)

Table 4 消費エネルギーの削減割合

Exercise	Time Constraint	Area Constrain	Energy it using 5Vu	Energy sing 5V, 3V	Reduction Ratio[%]
Test DFG (7)	8step	20	22	17	22.7
	9step	20	22	15	31.8
	10step	20	22	14	36.4
EWF (34)	25step	30	100	69	31.0
	27step	30	100	62	38.0
	30step	30	100	56	44.0

₩EWF: 5th order elliptic wave filter

4. むすび

本稿では,消費電力に着目した VLSI プロセッ サの設計法について述べた.まず,処理時間及び 面積制約下での消費エネルギー最小化問題を設定 し,整数計画問題として定式化した.しかしなが ら,整数計画問題は探索空間が膨大であり,大規 模な問題に対して適用が困難である.そのため, 次に,近似的な解を効率的に探索するアルゴリズ ムである遺伝的アルゴリズムを適用した.その際 に,致死遺伝子を抑制する交叉,遺伝的アルゴリ ズムに局所探索法を組み合わせるアルゴリズムを 提案した.最後に,本提案手法を適用し,例題に よる評価を行ったところ,複数電源電圧を用いる ことにより消費エネルギーが削減されることを確 認した.

今後の展望としては,実用上の VLSI プロセッ サを設計する上での総合的な評価を行っていくこ とが必要である.

参考文献

- A.P.Chandrakasan , S.Sheng , and R.W.Brodersen , "Low-power digital CMOS design , " IEEE Journal of Solid State Circuits , pp.473-484 , April 1992 .
- S.Raje , M.Sarrafzadeh ,
 "Variable Voltage Scheduling ," In Proceedings of the 1995 International Workshop Low Power Design , 1995 .
- 3) 亀山充隆,佐々木正行,"空間的・時間的並列 構造融合型VLSIプロセッサの最適設計,"
 電子情報通信学会論文誌,Vol. J80-A No.3, pp.499-508,1997.
- 4) 工藤隆男,張山昌論,亀山充隆,"遺伝的ア ルゴリズムを用いたロジックインメモリ構造 VLSIプロセッサのハイレベルシンセシス," 計測自動制御学会東北支部,資料番号195-9, 2001.
- 5) 大森健児, "遺伝的アルゴリズムによる高レ ベル合成," 電子情報通信学会論文誌, Vol. J81-A No.5, pp.854-862, 1998.