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1. Introduction

Kinematically redundant manipulators have been

studied for more than three decades 1), and numer-

ous redundancy resolution methods and respective

control laws have been proposed so far. Such ma-

nipulators are expected to be incorporated in au-

tonomous robots for dextrous manipulation tasks

and in teleoperators for application in space and

other risky environments. A few undergoing projects

are based on commercial seven-DOF manipulators

such as the Robotics Research K-1207 arm 2), or

the Mitsubishi PA-10 arm 3), well-known through

research laboratories worldwide.

Most of the research solves the underdetermined

redundancy problem by making use of a general-

ized inverse of the Jacobian, possibly in combina-

tion with a so-called self-motion term from the null

space of the Jacobian, or the augmented Jacobian

method 4). Unfortunately, these methods deterio-

rate due to singularities, both kinematic ones and

algorithmic ones, the latter being artificially intro-

duced by the additional constraint used to resolve

the redundancy. What is still needed is a reliable

approach which avoids this major drawback of the

existing algorithms.

The additional constraint for redundancy reso-

lution determines the behavior to a great extent.

For example, when the constraint is formulated in

terms of velocities and is a non-integrable one, the

behavior lacks cyclic path tracking ability, and the

motion is unpredictable. This is the case when the

redundancy is solved by means of the pseudoin-

verse, i.e. the joint velocities are being locally mini-

mized 5). Similarly, when the joint torque is locally

minimized, unpredictable behavior in terms of joint

velocities is observed. Therefore, it is desirable to

avoid such local minimization constraints, and to

employ instead a constraint in terms of positions,

i.e. a holonomic constraint.
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In the case of a seven-DOF anthropomorphic arm

such as those mentioned above, a suitable constraint

is the orientation of the arm plane determined by

the centers of the shoulder, elbow and wrist joints

6), 7). A method for representing the constraint

through a so-called “arm angle” is described in 2).

The arm-angle equation is derived in terms of joint

angles only and yields a predictable arm behavior.

Unfortunately, the equation introduces an algorith-

mic singularity.

We have proposed a method for stable control

at and around kinematic singularities of nonredun-

dant manipulators, the so-called singularity consis-

tent or SC method 8). The method has certain ad-

vantages over the well-known damped least-squares

or DLS method for singularity treatment 9), 10).

Its most important advantage is that no directional

error is introduced. Recently, the SC method was

applied to the Robotics Research K-1207 arm 11).

This arm has non-zero joint offsets, and therefore

the analytical expressions obtained are quite com-

plex. This is the reason why no closed-form inverse

kinematics solution has been found so far. The

SC method has been implemented in terms of dif-

ferential kinematics only, and hence, some of the

interesting features of the method have been lost.

In this paper we will consider an anthropomor-

phic seven-DOF arm with zero joint offsets and

kinematic decoupling, such as the Mitsubishi PA-

10 arm. This allows us to derive a closed-form so-

lution for the null space vector of the arm, and it

becomes possible to apply the SC method within an

analytic framework. The paper is organized as fol-

lows. First background about the SC approach and

a numerical implementation is presented. In Sec-

tion 3 we derive the main result. Section 4 presents

a simulation study. Finally, in Section 5 our con-

clusions are presented.

2. Background

2.1 The SC approach applied to a

non-redundant arm

The SC approach is applied to a non-redundant

arm according to the following procedure 8).

1) Denote the end-effector path as x(p) where p is

the path parameter, not necessarily time. The

path parameter augments the joint variables

q ∈ �n: q̄ = (q, p).

2) Derive the manipulator Jacobian J(q) ∈ �n×n

and form the column-augmented Jacobian:

H(q̄) =
[

J(q) −S(p)
]
.

S(p) ∈ �m denotes the unit vector along the

positive direction of the end-effector’s path tan-

gent, and dx(p) = dpS(p), dp = ‖dx(p)‖, see1 .

Thus, the system is represented as a closed-

loop system with one degree of redundancy:

H(q̄)dq̄ = 0. (1)

3) Find the solution to the last equation as

dq̄ = bf̄(q̄) (2)

where b is any small scalar, and f̄(q̄) ∈ kerH(q̄) ⊂
�n+1 .

The last equation represents an autonomous dy-

namical system, parameterized by the vector S(p).

It is important to note that the vector field f̄(q̄)

should not be derived as a function of the pseu-

doinverse H+, e.g. as a vector from the null-space

projector (I −H+H). Instead, we derive each en-

try as f̄i = (−1)i+1 detHi, i = 1, ..., n + 1, where
1 dp can be assumed to be dimensionless end-effector

“speed.” In such case, the units of the elements of S(p)
match those of dx(p).
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Hi stands for H with its i-th column removed 13),

14). The advantage of this derivation is that it

yields an inherently stable behavior around critical

points when any of the determinants approaches

zero. This includes the case of a kinematic singu-

larity, i.e. detHn+1 → 0.

2.2 The SC approach applied to a

seven-DOF arm in terms of dif-

ferential kinematics

Theoretically, when applying the SC method to

a n-DOF kinematically redundant arm, the follow-

ing two steps are envisioned. First, augument the

m-dimensional task-space constraint (i.e. the end-

effector motion constraint) by n−m additional con-

straints. This technique is well-known as the “au-

gumented task-space” approach 4). Second, pro-

ceed with the SC method as if the system is a non-

redundant one. The algorithmic singularities due

to the additional constraints will be treated thereby

as kinematic singularities. It turns out, however,

that from a practical viewpoint the solution is not

as straigtforward because of the complexity of the

system after the augumentation. Even with just a

single degeree of redundancy it might be impossi-

ble to derive a closed-form solution and to apply

the SC method to its full extent. Therefore, in 11)

a numerical approach has been proposed. The arm

angle was employed as an additional constraint.

3. The SC approach applied to

a seven-DOF arm with kine-

matic decoupling property

Let us consider an antropomorphic seven-DOF

arm with zero joint offsets and kinematic decou-
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Fig. 1　The four-DOF positioning arm.

pling property, such that the three-DOF spherical

wrist can be treated independently from the four-

DOF positioning arm. The latter is displayed in

Figure 1. We note that the Mitsubishi PA-10 arm

has such a structure. We will focus from now on the

positioning arm, since it contains the redundancy.

The direct kinematics of the manipulator arm is

solved based on the Denavit and Hartenberg no-

tation presented in 15). Upon differentation, we

obtain the Jacobian as follows:

j11(q) = d3S1S2 + d5(C4S2 + (C2C3S1 + C1S3)S4)

j12(q) = −d3C1C2 + d5(C1C3S2S4 − C1C2C4)

j13(q) = d5(C3S1 + C1C2S3)S4

j14(q) = d5(C4(S1S3 − C1C2C3) + C1S2S4)

j21(q) =

−d3C1S2 + d5((S1S3 − C1C2C3)S4 − C1C4S2)

j22(q) = −d3C2S1 − d5(C2C4S1 − C3S1S2S4)

j23(q) = −d5(C1C3 − C2S1S3)S4

j24(q) = −d5(C4(C2C3S1 + C1S3) − S1S2S4)

j31(q) = 0

j32(q) = −d3S2 − d5(C4S2 + C2C3S4)

j33(q) = d5S2S3S4

j34(q) = −d5(C3C4S2 + C2S4)

where d3 and d5 denote link lengths, Ci and Si

stand for cos qi and sin qi, respectively.
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There are two types of kinematic singularities:

(1) extended/folded-arm singularity (q4 = 0,±π),

and (2) shoulder singularity, when the end-point is

on the Z axis.

Denote by v ∈ �3 the (desired) wrist center point

velocity, and by v̂ the respective unit vector. This

vector will be used to parameterize the dynamical

system as explained in Subsection 2.1. We adjoint

−v̂ to the Jacobian, to obtain the 3 × 5 column-

augmented Jacobian. The solution of the respec-

tive homogeneous equation (cf. Eq. 1) is obtained

as

dq̄ = bsmf̄ sm(q̄) + bepf̄ep(q̄) (3)

where bsm and bep are arbitrary scalars and f̄sm(q̄)

and f̄ep(q̄) are vector fields from the kernel of H(q̄).

bsm and bep are considered as design parameters

which determine the speed along the two vector

fields. The vector fields we obtained in analytical

form using Mathematica. f̄sm(q̄) has the following

components:

f̄sm1(q̄) = −d5C3S
2
4/c

f̄sm2(q̄) = d5S2S3S
2
4/c

f̄sm3(q̄) = S4

f̄sm4(q̄) = 0

f̄sm5(q̄) = 0

where c = (d3 + d5C4)S2 + d5C2C3S4. f̄sm(q̄) de-

termines the self-motion of the manipulator since

f̄sm5(q̄) is identically zero. As expected, the joint

four velocity is also always zero during self-motion

of the arm. Further, it is apparent that whenever

the arm is at the extended/folded arm singular-

ity, no self-motion will be performed since S4 and

hence the entire self-motion vector field vanishes.

This matches the physical condition and shows the

appropriateness of the expression.

Next, let us consider the c term. This term van-

ishes at the shoulder singularity. Since it appears

in the denominator of the first two components, we

can expect problems around the shoulder singular-

ity, if self-motion via f̄sm(q̄) is attempted. On the

other hand, note that self-motion at the shoulder

singularity means arm-plane rotation around the

vertical Z axis, i.e. joint one rotation. Therefore,

we do not use the above vector field in the neigh-

borhood of the shoulder singularity.

The other vector field f̄ep(q̄) has some lengthy

expressions for three of its components, which we

will omit here. The exceptions are the third compo-

nent which is identically zero, and the fifth compo-

nent which is S4 and hence, non-zero, except at the

extended/folded arm kinematic singularity. The

latter shows that f̄ep(q̄) contributes to the end-

point (or wrist center-point) motion, and at the

extended/folded arm singularity the end-point will

be instantaneously at rest (the arm is in the state

of instantaneous self-motion) thus complying with

the physical motion constraint at this configura-

tion. This demonstrates again the appropriateness

of the expressions we derived for the Jacobian null

space.

The third component of f̄ep(q̄) being identically

zero is a somewhat surprising result. Note that

the q3 angle determines the orientation of the arm

plane, and whenever this joint is immobilized, the

orientation will be maintained. Thus, we obtained

a nice decoupling property: with bsm = 0, f̄ep(q̄)

will drive the wrist center-point in the desired di-

rection of motion without changing the arm-plane

angle; with bep = 0, f̄sm(q̄) will drive the self-

motion of the arm. Hence, effective arm motion

control will be possible by proper blending of bsm

and bep.
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There is one exception, when the arm is at the

shoulder singularity. It is intuitively clear that joint

three motion has no contribution to self-motion in

this case. As already mentioned above, self-motion

would imply joint one rotation only, which can be

achieved via the f̄ ep(q̄) vector field in combination

with a proper command direction, i.e. v̂ being out

of the arm plane. The vector field must be modi-

fied thereby2 in order to avoid the influence of the

term c apperaring as denominator in the first two

components.

We would like to emphasize that no explicit re-

dundancy resolution criterion is used. Neverthe-

less, we obtained effective arm-plane angle control.

Of course, no additional constraint means also no

algorithmic singularities. This is a significant ad-

vantage of the method compared with other redun-

dancy resolution schemes.

4. A simulation study

We will demonstrate the performance of the method

by means of two simulations. The link lengths are

d3 = d5 = 1 m. The desired end-point motion is

along a horizontal straight-line, with v̂ = (1, 0, 0).

The b’s are constant, i.e. natural motion is per-

formed and hence the initial and final velocity is

non-zero 8). Note that natural motion is quite suit-

able for analysis since it satisfies the specific end-

point motion constraint at a singularity.

In the first simulation, the initial joint angles are

(0, 0, 0,−90) deg. This yields initial wrist-center

location at (1, 0, 1) m. bep = 1, while bsm is set

to zero. This means that the arm-angle will be

maintained (no self-motion). The result is shown

in Figure 2. From the end-point position graph it

2 e.g. by choosing bep to be in proportion to c.

is apparent that after approx. 1 s the arm moves

smoothly through the extended-arm singularity at

the workspace boundary. Motion is reversed and

continues along the straight-line to cross the shoul-

der singularity (when x = 0). Later on, the arm is

once again fully extended and moves through the

extended-arm singularity on the opposite side. Mo-

tion continues in a cyclic manner.

In the second simulation we set bep = 1 and

bsm = 1 which yields end-point motion and self-

motion with equal weight. Also, we change the

initial joint angles as (0, 0, 60,−90) deg in order to

avoid the shoulder singularity. As already noted,

self-motion (via the f̄ sm(q̄) vector field) at this

singularity is physically impossible, so no attempt

should be made to approach it. The result is shown

in Figure 3. It becomes apparent that the extended-

arm singularity is reached and crossed (end-point

motion is reversed) without any problem. This

clearly shows that the arm-plane motion (self-motion)

can be superimposed even at the extended/folded

arm singularity without deteriorating the smooth-

ness.

5. Conclusion

We have presented a new and efficient method for

redundancy resolution for a seven-DOF arm with

zero joint-offsets and kinematic decoupling, envi-

sioning the Mitsubishi PA-10 arm. The method

is efficient in the sense that (1) no additional sin-

gularities are introduced and (2) motion does not

deteriorate around kinematic singularities. The ef-

fective redundancy resolution scheme is based on

arm-plane rotation control which is an intuitive and

practically valuable scheme. In a future work it

would be straightforward to derive a feedback con-
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Fig. 2　 Straight-line motion with constant
arm-angle.
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Fig. 3　 Straight-line motion with varying
arm-angle.
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troller based on the scheme, following a procedure

similar to the one we proposed earlier for a non-

redundant arm.
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