計測自動制御学会東北支部 第202回研究集会 (2002.7.2) 資料番号 202-9

アキシャルセルフベアリングモータのセルフセンシング制御

Self-Sensing Control of an Axial Self-Bearing Motor

上野 哲*,松田健一**,佐藤 洋*,岡田養二**

Satoshi Ueno*, Ken-ichi Matsuda**, Hiroshi Sato*, Yohji Okada**

*弘前大学, **茨城大学

*Hirosaki University, **Ibaraki University

キーワード: 磁気軸受 (Magnetic Bearing), セルフベアリングモータ (Self-Bearing Motor), セルフセンシング (Self-Sensing), 回転機械 (Rotary Machinery), 電磁アクチュエータ (Electromagnetic Actuator)

連絡先: 〒036-8561 青森県弘前市文京町3番地 弘前大学 理工学部 知能機械システム工学科 機械システム工学講座
 上野 哲, Tel.: (0172)39-3683, Fax.: (0172)39-3541, E-mail: ueno@cc.hirosaki-u.ac.jp

1. はじめに

磁気軸受は、磁気力を用いて回転軸を非接触で 支持する軸受であり,軸と軸受の摩擦が無いため エネルギ損失が小さく,高速回転に適している.ま た潤滑が不要となるため,真空中や高温,低温と いった特殊環境下やクリーンな環境で使用でき,さ らに摩耗がないため寿命が半永久的になる等の長 所を持っている¹⁾.こういった数多くの長所があり ながら,現在,その応用範囲はターボ分子ポンプ や人工心臓といった特殊なものに限られれている. この大きな理由として,磁気軸受を用いたシステ ムでは装置全体が大型化する,能動制御が必要な ため非常に高価になるなどの点が挙げられる.こ れらの問題を解決するため,磁気軸受と交流モー タを一体化したセルフベアリングモータ,アクチュ エータをセンサとして用いるセルフセンシング技 術の開発が行われている.

セルフベアリングモータは,磁気軸受と交流モー

タを一体化したモータであり,大きくラジアル型 とアキシャル型に分けられる.ラジアル型は,回 転トルクの発生とロータの半径方向の位置制御を 行う^{2,3,4)}. ラジアル磁気軸受の一つを省略でき小 型化やそれに伴う高性能化が期待できる.しかし 回転制御と位置制御のために独立した巻線が必要 となるため,ステータの構造や制御が複雑になる 問題がある.一方,アキシャル型は,回転トルクの 発生とロータの軸方向の位置制御を行う^{5,6)}.ア キシャル型は,回転制御と位置制御を単一の巻線 で行うため,ステータの構造や制御がラジアル型 に比べ簡単になる利点がある.またアーンショウ の定理より,一軸のみ能動制御を行えば安定な磁 気浮上が可能となるため,永久磁石反発型ラジア ル磁気軸受などと組み合わせ,非常に簡単な構造 と制御で非接触浮上回転を実現することができる 7)

セルフセンシング技術は,外部センサを用いず に,アクチュエータをセンサとして用いて制御を行 う手法である^{8,9,10,11,12)}.センサとアクチュエー タの場所が異なるコロケーション問題を解決でき, 配線やコストの削減を行うことができる.磁気軸 受のセルフセンシング制御は,大きくオブザーバ を用いる方法と搬送波を利用する方法に分けられ る.このうちオブザーバを用いる方法は,制御電 圧と電流の関係から変位を推定する方法で,特別 なハードウェアを必要としない利点がある.しか し精度の高いオブザーバが必要となり,また外乱 やパラメータ変動に弱い問題がある.一方,搬送 波を用いる方式は,制御電流の搬送波成分から変 位を推定する方法で,フィルタリング回路や復調 回路などのハードウェアを必要とするが,直接変 位信号が得られる利点がある.

本研究では,外部センサを用いずにアキシャル セルフベアリングモータのアキシャル方向の位置 制御を行う手法を開発する.アキシャルセルフベ アリングモータの場合,負荷トルクの大きさによ リパラメータが変化するため,オブザーバを用い る方法は難しく,制御電流の搬送波を利用して変 位の推定を行う.しかし従来提案されている手法 は,直流電流を対象にしているため,交流電流を 用いるアキシャルセルフベアリングモータとは特 性が異なる.本論文では,交流電流の場合のセル フセンシング特性を解析および数値計算により導 き,アキシャルセルフベアリングモータのセルフ センシング制御の可能性について検討を行う.

アキシャルセルフベアリング モータ

アキシャルセルフベアリングモータの概略を図 1に示す.アキシャルセルフベアリングモータは, ディスク型ロータの片面,あるいは両面にステー タを配置した構造になっており,回転トルクの発 生と軸方向の位置制御を同時に行う.ロータのラ ジアル方向は,動圧軸受や磁気軸受などの他の非

Fig. 1 Axial Self-Bearing Motor

接触型の軸受によって支持され,図に示すような 永久磁石反発磁気軸受を用いると,軸方向の位置 制御のみで安定な浮上が実現できる.

ステータは, 三相巻線などを用いてロータとス テータのエアギャップに回転磁界を発生させる.こ の回転磁界によりロータに回転トルクを発生させ るとともに回転磁界の振幅, 位相を変化させるこ とにより, ロータとステータ間に働く磁気吸引力 を制御する.アキシャルセルフベアリングモータ では, 回転制御と位置制御を同一の巻線で行うた め, これらに独立した巻線を必要とするラジアル セルフベアリングモータに比べて構造や制御が簡 単になる利点がある.

アキシャルセルフベアリングモータは,永久磁 石同期型,誘導型,リラクタンス型で実現できる が,ここでは効率が高く広く応用されている永久 磁石同期型について検討を行う.永久磁石同期型 のロータは,図2に示すようなディスクの表面に永 久磁石を貼り付けたものを用いる.

Fig. 2 Permanent Magnet Rotor

Fig. 3 2-Phase Winding

3. 変位セルフセンシング

交流モータの場合,ステータ巻線を3相巻線と し,3相PWMインバータで駆動される場合が多い. しかしセルフセンシングを行う場合,3相巻線で は各相の電流が干渉するため安定した変位の推定 が難しくなる¹³⁾.この問題を避けるためステータ 巻線を図3に示す2相巻線とし,それぞれの巻線を 独立したPWMアンプで駆動する.

変位の推定は,搬送波を利用する方法を用いる. ステータ巻線をスイッチングアンプで駆動すると, 電流波形にはスイッチング周波数と同じ周波数の リップルが現れる.このリップルの振幅は,電源 電圧の大きさ,電流,コイルのインダクタンスに よって変化する.コイルのインダクタンスは,エ アギャップの長さによって変化するため,電流波形 のリップルの振幅には変位情報が含まれる.よっ てリップルの振幅を復調することにより,変位が 推定できる.

5 1

Fig. 4 Self-Sensing Filter

振幅復調は図4に示すフィルターにより行う.ま ず電流波形をハイパスフィルタに通し,スイッチ ング周波数成分のみを取り出し,次に全波整流器 とローパスフィルタを用いて変位信号を取り出す.

4. 理論解析

次にアキシャルセルフベアリングモータでのセ ルフセンシング出力を解析的に導出する.

4.1 モデリング

磁気回路の座標系を図5に示すように定める.こ の図は円周方向に展開して表しており,図の角度 は電気角を表す.ステータ巻線は,αとβの2つが π/2の位相差で配置されており,ロータはfの巻線 が巻かれているとする.ロータの永久磁石はこの ロータ巻線fにより等価に置き換えられる.α軸と β軸はそれぞれの巻線で作られる磁束の方向を表 している.

ロータは非突極であるので,ステータ巻線の自 己インダクタンスは,ロータの回転角度に関係な

Fig. 5 Coordinate System

く,エアギャップの関数となる.エアギャップの磁 気抵抗がギャップの長さに比例すると仮定し,鉄 心の磁気抵抗を無視すると,ステータ巻線の自己 インダクタンスLは,

$$L = \frac{M}{g_0 + z} + L_l \tag{1}$$

となる.ここで*M*は単位長さのエアギャップでの 有効インダクタンス,g₀はノミナルエアギャップ 長さ,zはロータの変位,L_lは漏れインダクタンス を表している.ステータ巻線は,π/2ごとに配置さ れるため,ステータ巻線の相互インダクタンスは ゼロとなる.ロータ巻線の自己インダクタンスL_f は

$$L_f = \frac{M_f}{g_0 + z} + L_{fl} \tag{2}$$

となる.ここで M_f は単位長さのエアギャップでの 有効インダクタンス, L_{fl} は漏れインダクタンス を表す.解析を簡単にするため $M = M_f$ とおくと, ロータ巻線とステータ巻線の相互インダクタンス $L_{\alpha f}, L_{\beta f}$ は,ロータの回転角度によって変化し次式 のように表される.

$$L_{\alpha f} = \frac{M}{g_0 + z} \cos \phi \tag{3}$$

$$L_{\beta f} = \frac{M}{g_0 + z} \sin \phi \tag{4}$$

ステータ巻線の回路方程式は

$$v_{\alpha} = Ri_{\alpha} + p(Li_{\alpha}) + p(L_{\alpha f}i_{f})$$
(5)

$$v_{\beta} = Ri_{\beta} + p(Li_{\beta}) + p(L_{\beta f}i_{f})$$
(6)

となる.ここで v_{α}, v_{β} はステータ巻線にかかる電圧, i_{α}, i_{β} はステータ巻線に流れる電流, i_{f} はロータ巻 線に流れる電流, Rは巻線の抵抗, pは微分演算子 を表す.式(5)と(6)を展開し,整理すると

$$\dot{i}_{\alpha} = \frac{1}{L} \left(v_{\alpha} - Ri - \dot{L}i_{\alpha} - \dot{L}_{\alpha f}i_{f} \right)$$

$$\dot{i}_{\beta} = \frac{1}{L} \left(v_{\beta} - Ri - \dot{L}i_{\beta} - \dot{L}_{\beta f}i_{f} \right)$$
(8)

となる.式(7),(8)の v_{α} , v_{β} はPWMアンプによって V_s と- V_s の間で素早く切り替えられる.このため*Li* および $\dot{L}_{\alpha f}i_f$, $\dot{L}_{\beta f}i_f$ はv-Riに比べて小さくなるので 無視することができる.また漏れインダクタンス が小さいと仮定すると式(7),(8)は

$$\dot{i}_{\alpha} = \frac{g_0 + z}{M} \left(v_{\alpha} - R i_{\alpha} \right) \tag{9}$$

$$\dot{i}_{\beta} = \frac{g_0 + z}{M} \left(v_{\beta} - R i_{\beta} \right) \tag{10}$$

となり,電流の傾きがエアギャップ長さに比例することがわかる.よってリップルの振幅を復調することにより,変位情報を得ることができる.

4.2 セルフセンシング出力

アキシャルセルフベアリングモータでは,駆動 電圧 e_{α}, e_{β} は次式で表される.

$$e_{\alpha} = A\cos(\phi) \tag{11}$$

$$e_{\beta} = A\sin(\phi) \tag{12}$$

$$e_c = \frac{2V_s}{\tau}t, \qquad -\frac{\tau}{2} \le t < \frac{\tau}{2} \tag{13}$$

ここで^{*τ*}はスイッチング時間を表す.ステータ巻線 にかかる電圧は次式となる.

$$v_{\alpha} = \begin{cases} V_s & -\frac{\tau}{2} \le t < \frac{A}{V_s} \cos(\phi) \frac{\tau}{2} \\ -V_s & \frac{A}{V_s} \cos(\phi) \frac{\tau}{2} \le t < \frac{\tau}{2} \end{cases}$$
(14)

$$v_{\beta} = \begin{cases} V_s & -\frac{\tau}{2} \le t < \frac{A}{V_s} \sin(\phi) \frac{\tau}{2} \\ -V_s & \frac{A}{V_s} \sin(\phi) \frac{\tau}{2} \le t < \frac{\tau}{2} \end{cases}$$
(15)

-4-

電流波形は,抵抗が小さいと仮定すると

$$i_{\alpha} = \begin{cases} i_{\alpha0} + \frac{V_s\tau}{2L} + \frac{V_s}{L}t, \\ & -\frac{\tau}{2} \le t < \frac{A}{V_s}\cos(\phi)\frac{\tau}{2} \\ i_{\alpha0} + \frac{A\tau}{L}\cos(\phi) + \frac{V_s\tau}{2L} - \frac{V_s}{L}t, \\ & \frac{A}{V_s}\cos(\phi)\frac{\tau}{2} \le t < \frac{\tau}{2} \end{cases}$$
$$i_{\beta} = \begin{cases} i_{\beta0} + \frac{V_s\tau}{2L} + \frac{V_s}{L}t, \\ & -\frac{\tau}{2} \le t < \frac{A}{V_s}\sin(\phi)\frac{\tau}{2} \\ i_{\beta0} + \frac{A\tau}{L}\sin(\phi) + \frac{V_s\tau}{2L} - \frac{V_s}{L}t, \\ & \frac{A}{V_s}\sin(\phi)\frac{\tau}{2} \le t < \frac{\tau}{2} \end{cases}$$

となる.スイッチングは高い周波数で行われるの で,電流波形の低周波成分は直線的に変化すると 考えることができる.よって理想的なハイパスフィ ルタを通った後の信号は,電流波形から線形成分 を引き,

$$i_{\alpha}^{HP} = i_{\alpha} - i_{\alpha 0} - \frac{A\cos(\phi)\tau}{L}$$
$$i_{\beta}^{HP} = i_{\beta} - i_{\beta 0} - \frac{A\sin(\phi)\tau}{L}$$

となる.ローパスフィルタを用いると1周期の波形 の平均値にほぼ等しい出力が得られる.よってセ ルフセンシング出力 u_{α}, u_{β} は,フィルタが理想的で あると仮定すると

$$u_{\alpha} = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} |i_{\alpha}^{HP}| dt = \frac{V_s \tau}{4L} \left\{ 1 - \frac{A^2}{V_s^2} \cos^2(\phi) \right\} \quad (16)$$

$$u_{\beta} = \frac{1}{\tau} \int_{-\tau/2}^{\tau/2} |i_{\beta}^{HP}| dt = \frac{V_s \tau}{4L} \left\{ 1 - \frac{A^2}{V_s^2} \sin^2(\phi) \right\} \quad (17)$$

となる.これらの式から,セルフセンシング出力 が,φによって変化することがわかる.しかしそれ ぞれの出力が正弦波の2乗で変化しているため,二 つの相の出力を足すと

$$u_{\alpha+\beta} = \frac{V_s \tau}{4L} \left(2 - \frac{A^2}{V_s^2} \right) \\ = \frac{V_s \tau(g_0 + z)}{4M} \left(2 - \frac{A^2}{V_s^2} \right)$$
(18)

となり, ロータの回転位置に関係なく, エアギャッ プ長さに比例したセルフセンシング出力が得られ る.しかしセルフセンシング出力は駆動電圧の波 高値や電源にも影響を受けるため, セルフセンシ ング制御を実現するためには, これらの影響を取 り除く必要がある.

Fig. 6 Self-Sensing Outputs $(A/V_s = 0.4, \omega = 50$ Hz, z=0mm)

Fig. 7 Self-Sensing Outputs $(A/V_s = 0.4, \omega = 100$ Hz, z=0mm)

5. シミュレーション

以上の結果を確かめるため, MATLABを用いて 数値シミュレーションを行った.モデルのパラメー タを表1に示す.

図6および図7に, $A/V_s = 0.4, z = 0$ [mm] のとき の α 相, β 相のセルフセンシング出力を計算した結 果を示す.図6は $\omega = 50$ [Hz],図7は $\omega = 100$ [Hz]の

Table 1Simulation Parameters

Resistance <i>R</i>	2.2 [Ω]
Effective inductance M	4.0×10^{-6} [Hm]
Leakage inductance L_l	2.4×10^{-3} [H]
Nominal Air gap g_0	$1.06 \times 10^{-3} \text{ [m]}$
Equivalent Rotor Current i_f	0 [A]
Frequency of carrier	5[kHz]
Voltage of power source V_s	15[V]
Cut-off freq. of H. P. F.	1[kHz]
Order of H. P. F.	4
Cut-off freq. of L. P. F.	1[kHz]
	4

Fig. 8 Averaged Outputs

Fig. 9 Self-Sensing Property

ときの結果を示している.双方ともα相とβの出力 の位相が180°ずれており,式(16),(17)と同様の波 形が得られている.図8にα相とβ相のセルフセン シング出力を足した結果を示す.微小な振動が生 じているが,ほぼ一定の信号が得られた.

図9に駆動電圧を変化させたときのエアギャップ に対するセルフセンシング出力の特性を示す.駆 動電圧が固定されている場合は,セルフセンシン グ出力は,エアギャップ長さにほぼ比例している. しかし駆動電圧の変化によってセルフセンシング 出力は大きく変化することがわかる.

6. まとめ

本論文では,永久磁石型アキシャルセルフベアリ ングモータのセルフセンシング制御について,解 析および数値シミュレーションにより検討を行っ た.電流波形の高周波リップルを復調することで, エアギャップの長さを含んだ信号を取り出せるこ とを示した.しかしセルフセンシング出力は駆動 電圧の振幅によっても変化するため,今後はこの 影響を受けない制御方法を開発し, セルフセンシ

ング制御の実現を目指す予定である.

参考文献

- 日本機械学会編「磁気軸受の基礎と応用」, 養賢 堂, 1995
- Okada, Y., Dejima, K., Ohishi, T., Analysis and Comparison of PM Synchronous Motor and Induction Motor Type Magnetic Bearings, IEEE Trans. on Industry Application, Vol. 32, No. 5, September/October 1995, pp. 1047–1053.
- Chiba, A., Deido, T., Fukao, T, Rahman, M. A., An Analysis of Bearingless Motor, Proc. of 5th Symp. on Magnetic Bearings, Kanazawa Japan, August, 1996, pp.313–318.
- Schöb, R., Bichsel, J., Vector Control of the Bearingless Motor, Proc. of Forth International Symp. on Magnetic Bearings, ETH Zürich, August 1994, pp. 327–332.
- 5) 上野・岡田:「永久磁石アキシャル型セルフベアリ ングモータのアキシャル方向力とトルク特性およ びその制御」, 電気学会論文誌D 119巻3号, (1999), pp. 282–290.
- Ueno, S., Okada, Y., Characteristics and Control of a Bidirectional Axial Gap Combined Motor-Bearing, IEEE/ASME Trans. on Mechatronics, Vol. 5, No. 3, September 2000, pp. 310–318.
- 1) 上野・金箱・山根・岡田、「永久磁石反発を用いた1軸 制御アキシャル磁気浮上モータの浮上回転実験」、 日本AEM学会誌、Vol. 8-2, 1999, pp. 93-99.
- Mizuno, T. Bleuler, H., G\u00e4hler, C., Vischer, D., Towards practical applications of self-sensing magnetic bearings, Proc. of Third International Symposium on Magnetic Bearings, Tokyo, Japan, 1992.
- Noh, M. D., Maslen E. H., Self-Sensing Magnetic Bearing (Part I), Proc of Fifth International Symp. on Magnetic Bearings, Kanazawa, Japan, August 1996, pp. 95– 100.
- Okada, Y., Matsuda K., Nagai, B., Sensorless Magnetic Levitation Control by Measuring PWM Carrier Frequency Component, Proc. of Third International Symp. on Magnetic Bearings, Alexander, USA, 1992.
- Matsuda, K., Okada, Y., Self-sensing Magnetic Bearing using Principle of Differential Transformer, Fifth International Symposium on Magnetic Bearings, Kanazawa, Japan.
- 12) 松田・岡田,「浮上モータのセルフセンシング制御 に関する研究」,第6回「運動と振動の制御」シン ポジウム,千葉,1999年3月18-19日,pp. 330-335.
- 13) 上野・松田・岡田,「アキシャル磁気浮上モータの セルフセンシング制御に関する研究」,第7回「運 動と振動の制御」シンポジウム,豊中,2001年4月 25-27日, pp. 118-121.