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Abstract

A novel framework of fault detection of non-

stationary chemical process is proposed. This

method is based on the following three steps: (1)

decomposition of the observed signal into trend

and the residual component through the use of

the non-Gaussian state space model, (2) model-

ing of the residual component through the use of

an AR model with time varying coefficients, and

(3) checking the modeling error of the AR model

with a sequential probability ratio test. The pro-

posed framework can isolate the effects of noises

and process changes from the changes of opera-

tional modes. To demonstrate the method, sim-

ulated data from a simple process system with a

level control are successfully analyzed.

1. Introduction

To improve process quality, productivity and

safety, fault detection is an important problem of

practical interest in many chemical process plants.

Many algorithms for fault detection have been de-

veloped by many researchers. Statistical change

detection is a relatively old research field, but re-

cently interest has increased again with the active

research for data mining. The problem of detecting

a change in the parameters of a static or dynamic

stochastic system is well summarized in book2)

with key mathematical background. It includes

Shewhart control charts, geometric moving aver-

age charts, finite moving average charts, CUSUM-

type algorithms, GLR detector and Bayes-type

charts. Chianget. al. also summarizes many ap-



proaches for fault detection and isolation, includ-

ing statistical methods such as SPC, PCA, PLS,

FDA, CVA and soft computing methods3).

Although these methods are useful, real plant

includes various problems to apply these methods

and none of the method is sufficient for all the pur-

pose. Before applying the usual methods, decom-

position of operational data series into trend signal

and the other components can solve the problem in

many situations.

Decomposition of process signal into several

components has been studied with a primary fo-

cus on the problem of sensor validation. Many ap-

proaches have been investigated including cluster

analysis, pattern recognition, modeling individual

sensors, modeling a process including sensors, and

statistical analysis10). A linear Gaussian model is

one of the powerful approaches for the decompo-

sition with the help of Kalman filter and AIC crite-

ria. However it has the limitation not to apply the

process with the abrupt changes of process opera-

tional mode.

In this paper, decomposition of the observed

time series into trend and the other component is

investigated under the changes of process opera-

tional mode. To realize this facility, the trend of

the observed time series is modeled by the non-

Gaussian state space model using the Gaussian

mixture approximation. Subsequently, the resid-

ual of the trend model is modeled by time varying

coefficient AR model. Finally, the residual of the

AR model is tested by sequential probability ratio

test to detect faults.

2. Method

2.1 Decomposition and Fault Detection

The proposed framework of the fault detection

has the following three steps.

• Trend modeling: Modeling the trend of the

normal observation signals by non-Gaussian

state space model.

• Residual modeling: Modeling the residual of

the trend model by time varying coefficient

AR model.

• Fault detection: Decision making by sequen-

tial probability ratio test on the residual of the

AR model.

2.2 Trend Model

The problem of modeling a time series with

trend and stationary covariances is described here.

Kitagawa proposed a method to decompose an ob-

served time series into local polynomial trend, sea-

sonal, globally stationary autoregressive and ob-

servation error components6). In this model, each

component is characterized by an unknown vari-

ance — white noise perturbed difference equation

constraint.

In general, the state space representation for the

observationsyn is

xn = Fxn−1 + Gvn,

yn = Hxn + wn, (1)

wherexn is a state vector,F, G andH arem ×
m,m × `, and1 × m matrices, respectively. For

possibly non-Gaussian white noisesvn and wn,

the recursive formulas for obtaining the densities

of the one-step-ahead prediction and filtering are
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given as follows7):

p(xn|Y n−1) (2)

=
∫ ∞

−∞
p(xn|xn−1)p(xn−1|Y n−1)dxn−1,

p(xn|Y n) =
p(yn|xn)p(xn|Y n−1)

p(yn|Y n−1)
, (3)

wherep(yn|Y n−1) is obtained by

p(yn|Y n−1) (4)

=
∫

p(yn|xn)p(xn|Y n−1)dxn.

For the dimension valuem = 1, 2 and 3, Equa-

tion (1) represents the polynomial trend, station-

ary AR, and seasonal effects component models,

respectively. The polynomial trend component

is represented as ak−th order stochastically per-

turbed difference equation

∇ktn = vn, (5)

where∇ denotes the difference operator defined

by ∇t = tn − tn−1.

The corresponding matrices and state vector

components are:

(k = 1)

tn = tn−1 + vn, (6)

xn = tn, F = G = H = 1.

(k = 2)

tn = 2tn−1 − tn−2 + vn,

xn = (tn, tn−1)t, (7)

F =

(
2 −1
1 0

)
, G = Ht =

(
1
0

)
.

Gaussian model:

If the system noise and observation noise have

Gaussian densities, that isvn ∼ N(0, τ2) and

wn ∼ N(0, σ2), the value ofp(xn|Y n−1) and

p(xn|yn) can be effectively estimated through the

utilization of the Kalman filter1).

The best choice of the model can be made by

minimizing the value of AIC defined by

AIC = −2 log(maximized likelihood)

+2(number of free parameters).(8)

Under the Gaussian assumption, the likelihood

is represented by

L(θ,x0|0) (9)

=
N∏

n=1

(2πrn|n−1)
− 1

2 exp

{ −r2
n|n

2rn|n−1

}
.

wherern|n is the one-step-ahead output prediction

error (rn|n = yn −Hxn|n−1), rn|n−1 is its error

covariance matrix andθ = (τ, σ).

For the evaluation of the AIC criteria, initial

value of the variance of the state vector is cal-

culated by applying the estimation filter in re-

verse. As for the optimization search algorithm,

the Pokal-Ribiere-Polyak method is used in the

case study experiment.

non-Gaussian model:

If the noise densities are non-Gaussian, Kita-

gawa developed an algorithm for implementing the

non-Gaussian filter by approximating each density

function based on a continuous piecewise linear

function7). The method can be applied to lower

order systems, but it is not suitable for higher or-

der state space models due to the huge amount

of computation that is requires. Another practical

way of performing the computation is the use of

a Gaussian-sum filter by using Gaussian mixture

approximation to the related densities.

Let ϕi be properly defined Gaussian density.

The following approximations can be used.

p(vn) =
Kv∑

i=1

αiϕi(vn), (10)

p(wn) =
Kw∑

j=1

βjϕj(wn), (11)
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p(xn|Y n−1) =
Ln∑

k=1

γknϕk(xn|Yn�1),(12)

p(xn|Y n) =
Mn∑

`=1

δ`nϕ`(xn|Yn). (13)

Substituting these approximations into Equa-

tions (2) and (3), the following one-step-ahead pre-

diction algorithm is derived8):

p(xn|Y n−1) (14)

=
Kv∑

i=1

Mn−1∑

`=1

γi`,nϕi`(xn|Y n−1).

Here,ϕi`(xn|Y n−1) is the one-step-ahead predic-

tor of xn under the assumption of Gaussian noise.

Therefore,ϕi`(xn|Y n−1) can be estimated by or-

dinary Kalman filter. Here, one-step-ahead predic-

tion with non-Gaussian white noises can be esti-

mated.

Similarly, the following filtering algorithm is

obtained:

p(xn|Y n) (15)

=
Kw∑

j=1

Ln∑

k=1

δjk,nϕjk(xn|Y n).

In the implementation of the algorithm, reduc-

tion of the number of Gaussian components is con-

sidered. It was observed that a relatively small

number of Gaussian densities can approximate a

large class of distributions9).

2.3 Time varying AR coefficient model

The stationary model was discussed in the pre-

vious section. In this section, time varying AR co-

efficient model is considered, where the coefficient

anj changes gradually with time4). The model is

zn =
m∑

j=1

anjzn−j + wn, (16)

wherewn is a white noiseN(0, σ2
a).

A k-th order difference model for the AR coef-

ficients is defined by

∇kanj = vnj . (17)

The state space representation of the time vary-

ing coefficient AR model becomes

xn = Fxn−1 + Gvn, (18)

zn = Hnxn + wn, (19)

whereHn is thekm dimensional vector.

For example, ifk = 1, the state space represen-

tation of the model is as follows:

xn = [an1, an2, · · · , anm]T , (20)

F n = Im, (21)

Gn = Im, (22)

Hn = [zn−1, zn−2, · · · , zn−m], (23)

whereIm is the unit matrix ofm×m.

2.4 Fault Detection

By using the above mentioned decompositions,

several kinds of fault detection schematics could

be constructed. As an example of the application

of the decomposition, a method using the residual

of the time varying coefficient AR model is pro-

posed in this section.

If the system is normal, the modeling error of the

time varying coefficient AR model can be consid-

ered to have a normal Gaussian distribution. Then,

a fault can be detected by Wold’s sequential prob-

ability ratio test (SPRT) on this error signal.

The sequential probability ratio at timen is de-

fined by

λn = λn−1 + log
P (ηn|H1)
P (ηn|H0)

, (24)

whereηn is the modeling error at timen. H0 is the

hypothesis that the system is normal, andH1 is the
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hypothesis that the system is faulty.P (ηn|H0) and

P (ηn|H1) are the probability density functions for

the normal data and abnormal data, respectively.

A fault can be detected by monitoring the mean

value and the variance ofλn with the following

equations:

λn = λn−1 + ma(ηn − ma

2
), (25)

λn = λn−1 − η2
n

2
(

1
v2
a

− 1)− 1
2

log(v2
a),(26)

wherema andv2
a are the mean and variance ofηn

in abnormal situation.

3. Case Study

3.1 Simple Tank System

To demonstrate the ability of the method, it is

applied to a simple tank system with level control.

Figure 1 shows the flow diagram of the simulated

system. The tank is modeled with an ordinary dif-

ferential equation based on the mass balance.

dh

dt
=

1
A

Fin − cu

A

√
h (27)

Observation noises are added to each observa-

tion variable (h, Fin, Fout andu). The valve char-

acteristics are defined by a first order lag system.

In this process, the liquid levelh is controlled by

a PI controller, parameters of which are tuned by

Cohen-Coon method. Runge-Kutta method is used

F in

Fout

h u

Fig. 1　The example process
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Fig. 2　Simulation run for normal operation

for the integration of the system equation, and the

sampling time of the control is 5.0 second.

Figure 2 shows an example of the simulation.

In this simulation, initial set point ofh was 0.8

m. It was changed to 0.3 m att = 1000 seconds,

and changed again to 0.6 m att = 2500 seconds.

Initial value of the input flow rateFin was 0.01

m3/S, and the value was changed to 0.005 before

t = 1500 seconds. Other variables,Fout andu, are

calculated from the system equations.
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Fig. 3　Estimated trend forFin in Figure 2

(non-Gaussian model)

3.2 Trend Modeling

For the data set of Figure 2, non-Gaussian mod-

eling is applied in order to make the trend model of

the normal operation. Based on the algorithm de-

scribed in the previous section, Figure 3(a) is ob-

tained for the estimated trend component ofFin.

This result shows that the Gaussian mixture ap-

proximation for system noise can handle both the

slow shift and the abrupt shift in the process sig-

nal. In the same figure, graph (b) plots the residu-

als, which is the differences between the estimated

trend and the observation. Figure 4 shows esti-

mations for the other measurements. As shown in

the graph, the residuals do not include any abrupt

changes. These graphs show that the non-Gaussian

model can decompose the observation signal very

well.

For comparison, the result of the decomposi-

tion of the observation signal by Gaussian model

is shown in Figure 5. The figure shows that, Gaus-

sian model cannot model the abrupt changes, such

as the change at 1500 seconds and relatively large

residual remains at the point. Also, compared to
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(non-Gaussian model)

– 6 –



� �����
��� ���
��� ���
�
	 ���
�����
	 ���
� ���
� ���
�����

� ���� 	 ����� 	 ���� � ����� � ���� � �����

�����

� �����
��� ���
��� ���
� �����
�����
�����
� ���
� ���
�����

� �	�
� � �
�
� � �	�
� �	�
�
� �
�	�
� �	�
�
�
������������

���
�

Fig. 5　Estimated trend for Fig. 2 (Gaussian

model)
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Fig. 6　Estimated AR coefficient and modeling

error for the residual

the non-Gaussian model, the trend component is

not as smooth.

3.3 Residual Modeling

The residual of the trend model is modeled by

time varying coefficient AR model. Figure 6(a)

shows the estimated coefficient of the model. The

modeling error, which is the difference between

the AR estimated value and the residual, is shown

in Figure 6(b). In this calculation, model param-

eters are set tom = 1, k = 1, which is decided
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Fig. 7　Faulty operation (valve stuck)

using the AIC criterion. Figure 6(a) shows that

AR coefficient changes slowly, which corresponds

with the fact that the residual of the trend model

does not have strange values. As a result, the mod-

eling error of the AR model, seems to be a white

noise (Figure 6(b)).

4. Fault Detection

Now, let us consider about the fault in another

simulation run (Figure 7). Let us suppose that a

valve stuck at 2000 seconds. In this simulation,

initial value of the set point of the level was 0.6

m. It was changed to 0.4 m at 1000 seconds, and

changed again to 0.7 m at 2500 seconds. Although

the valve stuck at 2000 seconds, the levelh vir-
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(non-Gaussian model)
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Fig. 9　Result of Fault Detection by SPRT

tually seems to be controlled normally until 2500

seconds.

The proposed framewrok is applied to this faulty

data. Figures 8 and 9 show the estimated trend

and SPRT value for the fault detection respectively.

As shown in the figure 9, the SPRT value of the

variance suddenly becomes large at 2000 seconds,

which corresponds to the occurrence of the valve

stick. A sudden change in the variation of resid-

ual is also shown in the Figure 8. In normal data,

u should include both the process noise and ob-

servation noise, but in this data, only the observa-

tion noise is included after 2000 seconds. With

the existence of changes in the set-point of liq-

uid level or changes of the process disturbance, the

method detects the real fault with considerable ac-

curacy. This result shows that the proposed frame-

work provides an excellent tool for fault detection

of non-stationary chemical process.

5. Conclusions

In this paper, we have proposed a novel method

for the decomposition of process time series data

into the trend and the residual component. The

method is based on the non-Gaussian state space

model and can deal with the changes of operating

conditions. As an application of the decomposi-

tion, a method of fault detection is shown by using

the modeling error of the time varying coefficient

AR model, which models the decomposed residual

from the trend.

The method is applied to a simple tank system

with liquid level control. The example process has

several operational changes, such as the set-point

changes; additionally, a valve stick error is suc-

cessfully detected by the sequential probability ra-

tio test of the modeling error. The example shows

that the proposed method add a powerful tool for

the decomposition of process trend. Our method is

also useful for the detection of fault in the process

having changes in operation mode. Future direc-

tion will likely include the use of the other decom-

posed components for fault detection.
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