# 計測自動制御学会東北支部 第 208 回研究集会 (2003.5.22) 資料番号 208-8

# BWR 条件水ループにおける破断兆候の早期発見に関する研究

# Early Detection of the Material Degradation on the under the Water Condition similar to that of the Boiling Water Reactor

○玉木 雄二\*, 辻元 洋典\*\*, 高橋 信\*, 北村 正晴\* ○Yuji Tamaki\*, Yousuke Tsujimoto\*\*, Makoto Takahashi\* and Masaharu Kitamura\*

> \*東北大学大学院工学研究科 \*School of Engineering, Tohoku University

キーワード:応力腐食割れ(Stress Corrosion Cracking), 沸騰水型原子力発電所(Boiling Water Reactor), システム安全裕度テストベンチ(System Safety Benchmark Facility), Leak Before Break, 温度・湿度計測(Measuring of Temperature and Humidity)

 連絡先: 〒980-8579 仙台市青葉区荒巻字青葉 01 東北大学大学院工学研究科 量子エネルギー工学専攻 北村研究室 玉木雄二 Tel/Fax(022)217-7921, E-mail: y.tamaki@luke.qse.tohoku.ac.jp

## 1. 諸言

原子力発電所は、社会的にもその安全性が 重要視される大規模機械システムであり、原 子力発電所での事故による人命の損失や環境 への悪影響は、あらゆる手段を用いて防いで いかなければならない。原子力発電所の安全 性・信頼性の向上というものは、格段に高い レベルの実現が要請され、達成されなければ ならない。このような要請に対して、原子力 発電所の安全性・信頼性に対して影響を与え る様々な要素に関して研究が行われてきた<sup>1)</sup>。

原子力発電所のハードウエア面での安全性 向上という点において、近年、重要視されて いる問題として材料劣化破壊に伴う異常事例 があげられる。例えば、沸騰水型原子力発電 所(Boiling Water Reactor:以後 BWR)での 応力腐食割れを起因とする故障事例が報告さ れており、2001年に起きた浜岡原子力発電所 における制御棒駆動機構ハウジング部からの 漏洩も、応力腐食割れを起因とするものであった<sup>2)</sup>。このような問題に対して、複合環境 下での材料破壊の予測という点から、東北大 学工学部では破壊制御システム研究施設を中 心として材料に関する破壊メカニズムの研究 が行われており、本研究もこのプロジェクト の一環として行っている。

応力腐食割れは「材料の使用環境」、「材料 に加わる力」、「材料の性質」の3つの要因が 特定の条件で重なり合ったときに生起する<sup>30</sup>。 このような特定の条件を満たしやすい環境と して、苛酷環境である高温高圧配管の溶接部 があげられる。実際に、原子力発電所での応 力腐食割れを起因とする故障事例の多くは配 管溶接部で起きている。高温高圧配管部は原 子力発電所の保守において重要な箇所である。 しかし、複雑で膨大な原子力発電所の配管部 の、すべての材料破壊を予測し、防ぐことは 現状では困難である。したがって、材料破壊 の予測技術に関する研究を進めるとともに、 配管部分の割れによる漏洩を早期に検出する 技術が必要である。現在の原子力発電所では、 配管部分から漏洩が起きても安全性が十分に 確保できるように対策が講じられている。し かし、より高いレベルの安全性・信頼性を実 現するためには、このようなトラブルの兆候 を運転中に捉え、早期に対策を講ずることが 重要であると考えられる。すなわち、Leak Before Break の段階で材料破壊兆候を検出 する技術が求められている。

以上の背景を踏まえ、本研究では BWR 環 境での高温高圧配管部における材料破壊兆 候の早期検出を目標に掲げる。

材料破壊を早期に検出するためには、材料 破壊時にどのような現象が生起し、それが計 測値にどのように表れるかを明確にしなけれ ばならない。そのため、材料破壊によって生 じる計測値の有意な変化を、原子力発電所配 管部での材料劣化破壊を模擬した実験装置の 計測データから検出し、その原因を考察する。

### 2. 手法~実験環境と計測系について

本研究で用いた実験装置は、BWR の放射 性物質以外の水環境を模擬し、その環境下で 構造材がどのように変化するか、またそれに 伴って水環境がどのように変わっていくかを 評価することを目的としている。実験の目的 に応じて、特定の水環境(溶存酸素量、流量、 温度、圧力等)を設定し、構造材に対して特 定の荷重負荷をかけることが可能である。構 造材についても、試験片の材料、形状を設定 することが可能である。つまり、環境、材料、 そして荷重の応力腐食割れの生起条件を設定 し、それらとき裂の進展の因果関係について 検討することが可能となっている。

材料破壊の初期兆候を計測データから検出 するには、多方面から計測を行うことが望ま しい。そこで本研究では、新たに設置したセ ンサのほかに、SSBF に既存のシステム制御 を目的としたセンサの値も解析の対象として いる。また、これらの計測系から得られる大 量の情報を効率的に取得、共有することを目 的として、先行研究によりオンラインシステ ムを用いた自動計測システムが構築され、実 際の実験において利用されている<sup>4)</sup>。

### 2.1 システム安全裕度テストベンチ

システム安全裕度テストベンチ(System Safety Benchmark Facility:以後 SSBF)の目 的は、複雑な環境体系での大規模システムに おける生起事象を予見し、その知識を踏まえ てシステムとしての安全裕度を評価すること である。本装置の概観を Fig.1 に示す。SSBF は、並列テストセクションを備えた高温高圧 水ループ方式を採用している。並列テストセ クションの異なる点は流速の大小である。 Fig.1 において No1、No2 と明記されている が、この中には高温高圧の水が流れる試験片 が設置されており、各々のテストセクション は流速を制御することが可能である。以後、 本論文では高流速の流体が循環するテストセ クションを高流速ループ、低流速の方を低流 速ループとする。流速の違いを生起させるた めの構造的な制約から、二つのテストセクシ ョンのループ経路は若干異なるが、その他の 環境(水環境、荷重など)はまったく同じに なっている。本装置の仕様を Table 1 に示す。

SSBF を用いて、高温高圧水中における原 子力金属材料試験片(パイプ試験片)の荷重 負荷試験を実施している。各々のプロテクタ 一内部には試験片が設置され、荷重負荷をか けるとともに水質調整を行った高温高圧水を 試験片内部に送り出し、循環させる。このよ うなループを作ることにより、原子力発電所 の水環境を再現し、高温高圧環境での応力腐 食割れを促進させる。試験片にはスリット(切 りかき)が設けられており、基本的にはその 箇所で応力腐食割れが生じ、試験片外表面ま で割れが進展するまで行われ、実験期間は数 ヶ月に及ぶ。第1回目実験終了時のき裂の様 子を Fig.2 に示す。Fig.2 は、第1回実験後 のき裂正面・き裂断面の写真である。き裂の 進展により試験片表面に発生した割れは、長 さ2.7mm、平均幅5.1×10-2mmと、大変小 さなものであるが、内圧が高いために水の漏 洩を引き起こす。このような割れが試験片に 発生し、最終的にSSBFの安全停止装置によ りシステムが停止する。



Fig.1 システム安全裕度ベンチ(左) と試験片の写真(右)

Table 1 SSBF の仕様

|      |           | 低流速ループ                          | 高流速ループ      |
|------|-----------|---------------------------------|-------------|
| 設計条件 | 温度        | 325°C                           |             |
|      | 圧力        | 16MPa                           |             |
| 運転条件 | 温度        | 320°C                           |             |
|      | 圧力        | 15MPa                           |             |
|      | 流量(低圧条件下) | 60L/hr * 2 circuits             |             |
| 流量   |           | 1L/min                          | 74~145L/min |
| 流速   |           | 0.55~0.180m/sec                 | 8.0m/sec    |
| 荷重制御 | 荷重        | $\pm 10$ kN(Static)             |             |
|      |           | ±90kN(Dynamic)                  |             |
|      | ピストン変位    | −10 <sup>~</sup> +30mm          |             |
|      | 負荷パターン    | sine wave, traiangular wave,    |             |
|      |           | sawtooth wave, trapezoidal wave |             |
|      | 計測精度      | ±1%(荷重)                         |             |
|      |           | ±1%(ピストン変位)                     |             |





### 2.2 試験片

本実験に用いた試験片の形状を Fig.3 に示 す。本試験片は溶接部を含んだ原子炉配管を 模擬している。内径 50mm、外径 58mm、管 厚 4mm の SUS304・SUS304L・SUS316L がそれぞれ溶着金属 Alloy182 を用いて溶接 されている。これらの材料は実際の原子炉配 管に用いられているものと同等である。なお、 溶接において生じる余盛は、管内面および外 面ともに除去しており十分に滑らかな面とな っている。

試験片の管内面には、放電加工(Electric Discharge Machining, EDM)によって楕円 形のスリットが数箇所設けられている。



 $\Gamma Ig.0 = M_{OR}/(0.7)$ 

### 2.3 計測系

本研究目的において用いた計測系は以下の 2つである。

1.テストベンチループ系に関わる水質・温 度・負荷などのプロセスパラメータ

2.試験片周辺の雰囲気中における温度・湿度 の計測

また、長期の計測を支援する自動計測シス テムについても述べる。

#### 2.3.1 プロセスパラメータ

テストベンチループ系の計測値は、SSBF の制御・監視を目的として予め設置されてい るもので、全部で 29 個のパラメータが存在 する。計測部分の配置図と各計測パラメータ の説明をそれぞれ Fig.4 に示す。このような、 既存の計測値も利用して材料破壊兆候の検出 を多方面からアプローチした。また、プロセ スパラメータを解析することにより、SSBF が停止した時間(SSBFが材料破壊を検知し た時間)を知ることができる。本研究におい て得られた材料破壊兆候は、このSSBFの停 止時刻よりも十分に早い時刻に材料破壊を検 知できるものである。



Fig. 4 SSBF のプロセスパラメータ

### 2.3.2 試験片周辺の温湿度計測

1) 温湿度計の仕様

本研究では温湿度計として、温湿度変換器 THT-RV2(神栄株式会社)を用いた。温湿度 計の概要と仕様を Fig.5、Table 2 に示す。湿 度素子はロトニック社の高分子容量型素子 HYGROMER を用いている。湿度素子の計測 範囲は-50~+200℃であり、高温・低湿の本実 験環境に適している。

素子部の保護のために計測器の先端にはフ ィルターが取り付けられている。本実験環境 を考えて、フィルターはテフロン製の SP-TF15(神栄株式会社)を用いた。これは 孔径が小さく、疎水性のため飛沫がかかるよ うな雰囲気に適している。

温度測定は測温抵抗体 Pt100Ω 3線式抵抗出力をもちいている。測温抵抗体は 600℃以下の雰囲気温度の測定としては最もよい精度が望める。側温抵抗体は、プロテクター内

の雰囲気温度を計測するために用いている。 以後、側温抵抗体の測定値を雰囲気温度とす る。

抵抗出力はデジタル指示調節器を用いて電 圧出力とし、AD 変換ボード National Instruments PCI – MIO - 16E - 4を介して コンピュータにデータを転送している。これ により、自動計測システムを利用して計測値 のオンライン監視が可能となっている。



フランジ

Fig.5 温湿度センサ概要

Table 2 温湿度センサ仕様

| 測定温度範囲 | (センサ部)-50~200℃                            |  |  |
|--------|-------------------------------------------|--|--|
| 測定湿度範囲 | 0∼100%rh(at 0~80°C)                       |  |  |
| 温度精度   | Pt100Ω 1/3DIN (JIS C 1604-1997 CLASS A相当) |  |  |
| 湿度精度   | ±3%rh(at25℃、10~95%rh)                     |  |  |
| 温度出力   | Pt100Ω3線式抵抗出力                             |  |  |
| 湿度素子   | 高分子容量型センサ Hygromer IN-1(ロトニック社)           |  |  |

3) 設置環境

温湿度計の設置環境を Fig.6 に示す。温湿 度計はプロテクターの上部に、フランジを用 いて固定している。カップリングは AC1303 を用い、フランジは設置環境を考慮して製作 した。ボルトで取り付けてあるため、実験中 でも取りはずしが容易である。周辺環境は高 温低湿(約 100℃、約 5%rh)であるが、本 センサは十分耐えうる仕様となっている。ま た、プロテクター上部には、リーク時に水蒸 気を逃すための通風口が設けられて、プロテ クター内は、ほぼ大気圧下にあると考えてよ い。



Fig. 6 温湿度センサ設置概要

### 2.3.3 自動計測システム

本実験は、き裂が外表面上に達し、リーク が発生するまで続けられ、実験開始から終了 までは数ヶ月に及ぶ。また、同じ実験設備を 用いて同時に実験を行っていることから、デ ータの共有化を図る必要がある。これらの問 題を解決するために、自動的に実験データを 計測し、インターネットを用いて実験データ の閲覧および取得が可能なシステムが先行研 究により構築されている<sup>4)</sup>。自動計測システ ムの概要を Fig.7 に示す。



### **3. 実験結果とその考察**

SSBF 停止前のデータから検出した材料破 壊兆候について述べる。それぞれの材料破壊 兆候について、代表的な測定データとその特 徴・材料破壊との関係を述べる。

尚、SSBF 停止は、循環水の圧力が規定値

を下回ったために行われた。この SSBF の停 止時刻を、システムとして材料破壊を検知し た時刻とし、これ以前の計測値の有意な変化 を材料破壊兆候の対象として解析を行った。 以下で述べる材料破壊兆候は、複数回の実験 において、計測値の変化が特に早期に起こり、 その物理的根拠がはっきりしているものであ る。

#### 3.1 試験片壁面温度の低下

試験片壁面温度の実験データを Fig.8 に図 示する。この実験データは、SSBF 停止時刻 前の試験片壁面温度の挙動であり、同一の試 験片壁面の異なる箇所(試験片の中部と下部) の計測データを示している。システムの停止 約3時間前に試験片壁面温度の低下が始まり、 その後徐々に試験片壁面温度が低下している ことが分かる。このような低下がみられる前 は、試験片壁面温度はほぼ一定の値を保って いる。

また、試験片壁面温度は試験片の数箇所で 計測されており、すべての箇所でこのような 温度低下がみられた。



試験片壁面温度の低下が材料破壊(試験片の割れ発生)により生起したと考えると、割れから水が流出し、その結果水が蒸発、そのときの気化熱により温度が低下、という事象が考えられる。温度の低下が試験片全体で起こったこと、雰囲気温度が低下したことから、水が割れから"噴出"し、プロテクター内に

拡散したと考えられる。また、割れの面積が 微小であることから、噴出した水は、気体・ 液体の二層流がミストの状態で噴出すること が予想される(二層噴流)。気流中に微小液滴 を混濁した混層流によるミスト冷却は、単層 流に比べて著しい伝熱促進をもたらす <sup>5</sup>こと が知られている。また、ミスト冷却は気流境 界層内での液滴蒸発、加熱面での液滴の付 着・蒸発さらには壁面に形成された液膜から の蒸発および液膜流によるエンタルピー輸送 などの効果による <sup>5</sup>。したがって、試験片壁 面温度低下の原因は、割れより噴出した水の 試験片表面での気化と、試験片付近の気体中 での気化であると考えられる。

### 3.3 プロテクター内湿度の増加

Fig.9 に SSBF 停止前の相対湿度の値を示 す。Fig.9 から、システム停止前に相対湿度 が上昇していることがわかる。この後急激に 湿度の値は上昇し、数分後プロテクター内の 湿度は飽和状態に達するまた、湿度上昇前の 計測値は、一定の値に保たれていた。

このような湿度の増加は、試験片からの漏 洩によりプロテクター内の水蒸気量が増加し たためと考えられる。また、プロテクター内 の環境が高温・低湿(100℃、5%rh)であり 僅かな漏洩が直に気化する状態にあること、 プロテクター内という限定された領域である ことからこのような顕著な変化になったと考 えられる。



Fig.9 SSBF 停止前のプロテクター内湿度

#### 3.3 プロテクター内雰囲気温度の低下

Fig.10にSSBF停止前のプロテクター内雰 囲気温度の実験データを示す。Fig.10 から、 システム停止前に雰囲気温度が低下している ことがわかる。低下が始まったのは、試験片 壁面温度の低下とほぼ同じ時刻であった。雰 囲気温度は急激な低下を示してから一時的に 増加し、その後緩やかに減少している。また、 このような温度低下がみられる前は、計測値 はほぼ一定の値を保っていた。

雰囲気温度がこのような挙動をとった理由 としては以下のことが考えられる。試験片で の割れからの二層噴流が気化し、壁面温度を 低下させることは述べた。壁面温度の低下に より、雰囲気温度も低下したとも考えられる が、雰囲気温度低下の挙動と、壁面温度低下 の挙動は異なる。例えば、雰囲気温度の一時 的な低下は、壁面温度には見られない特徴で ある。よって、割れの発生により噴出した水 の雰囲気中での気化が、雰囲気温度の低下に 大きな影響を与えていると考えることができ る。



### 3.4 相対湿度と雰囲気温度の関係

Fig.11 に、SSBF 停止前の相対湿度と雰囲 気温度の変化を同時に示す。Fig.11 から、最 初の雰囲気温度の低下時には、相対湿度も上 昇していることが分かる。このことは、雰囲 気温度の低下が漏洩により起こったことを示 している。また、相対湿度が 100%に達する と、雰囲気温度は低下しなくなることが分か る。これは、相対湿度が 100%に近いほど、 空気中の水の気化(雰囲気温度の減少)は抑 制され、逆に相対湿度が小さいほど、水の気 化が激しいためと考えられる。同様にして、 雰囲気温度の一時的な低下も、漏洩初期はプ ロテクター内が低湿度状態であったために気 化が激しく起こり、湿度の上昇に伴い、気化 が抑制され温度が上昇したと考えられる。こ のような雰囲気温度と相対湿度の関係は、雰 囲気温度の減少が雰囲気中の水の気化を原因 としていることを示している。



Fig.11 プロテクター内の雰囲気温度 (実線) と相対湿度(点線)の変化

## 4.結言

本研究では、高温高圧配管部における材料 破壊兆候の早期検出を目的として取り組んだ。 その結果、BWR 水環境での材料破壊を模擬 した実験装置において多方面からの計測を行 い、上述したような複数の材料破壊の初期兆 候を検出することができた。

本研究の実験環境は、放射性物質の取り扱い以外は BWR 環境における高温高圧配管部の水環境を模擬している。このような環境で得られた材料破壊兆候に関する知見は、実際の原子力発電所においても十分適応可能であると考えられる。

今後は、同様の実験を継続して行い、材料 破壊兆候を早期に発見し、材料劣化の確実な 検知を行う手法の確立を目指す。

具体的には以下の研究内容が考えられる。 1)本研究で確認された材料破壊兆候につい て、計測方法を改良しながら今後も継続して 計測を行い、計測値挙動のより詳細な解明を 行う。

2)より早期の(漏洩前の)材料破壊兆候の 検出を可能にする計測手法・データ解析手法 を提案・評価する。

本研究は文部省中核的研究拠点(COE)形成 プログラム(COE research-11CE2003)の支 援を受けて行われている。

### 参考文献

<sup>1)</sup> 北村他:安全の探求、224/252、ERC 出版 (2001)

<sup>2)</sup> 浜岡原子力発電所1号機 制御棒駆動機構 ハウジング部からの漏洩に関する原因と対策 について

http://www.chuden.co.jp/press/data/pre200 2/pre0424\_04.html

<sup>3)</sup> 辻川茂男:材料環境学入門 腐食防食協会 編、丸善株式会社(1993)

4) 辻元洋典:破壊制御実験の統合データ管理 システムの開発、平成 14 年度修士論文、東 北大学大学院工学研究科

<sup>5)</sup> 日本機械学会: 伝熱工学資料、114/126、日 本機械学会(1986)