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1. Introduction

Stability is undoubtedly the most important re-
quirement for an multidimensional (nD) filter or
system. To ensure satisfactory performance of a
stable nD system, it is also often necessary to know
how stable, or how far away from being unstable
the system is 3). The stability analysis problem
for 2D systems, including various stability criteri-
ons and corresponding tests as weéll as the deriva-
tion and computation of different kinds of stabil-
ity margins, has been well investigated and docu-
mented in the literature (see, e.g., 23613 17’19}).
For the nD (n > 2) case, however, due to the dif-
ficulties growing with the number of dimensions n,
though considerable results for nD stability condi-

tions have been obtained, only rather limited re-

sults have been reported for both nD stability test

and nD stability margin computation and a lot of
difficulties still remain to be challenged (see, e.g.,
7-10, 12,18,20,21))_

The purpose of this paper is to tackle, by utilizing
p analysis approach, the stability analysis problem
for nD systems characterized by state-space mod-
els. Tt is shown that the problems of stability test
and stability margin computation for an nD sys-
tem described by Roesser model can be recast into
a set of p analysis problems in a unified way, thus
can be solved effectively by using the commercially
available software package 5). In particular, the re-
lation between the structured singular value p(A),
with A being the state matrix of an nD Roesser
model, and the stability and several kinds of sta-
bility margins of the nD system characterized by A
is clarified, and methods for computation of these

stability margins are given.
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The paper is organized as follows. Section 2 gives
some preliminaries for the stability of nD systems
described by Roesser model, and a short overview
on the p analysis. In Section 3, as the main results
of the paper, several kinds of nD stability margins
are defined in a precise way and it is show how the
problems of nD stability test and stability margin
computation can be accomplished in a p analysis
setting. Finally, the concluding remarks are given

. in Section 4.

2. Preliminaries

Roesser state-space model for an MIMO nD sys-
tem 7) is given by

mf(ila---:in) - A-T(Il,
y(il:---gin} = Cm{il,...

,’I.n) +Bu(’£1,...,in)
vin)+HDulty, .., 10)

where u(iy, . ..,in) € R" and y(i1,...,i,) € R’ are
the input and output vectors, respectively; &(i1, .- -,

in) € R™ is the local state vector in the form

(i1, -, 0n)
_ , Ta(i1, -, in)
.’L'(’l;]_,.-.,’-'.n) = 3
L @n(is,---sin)
[ @iy + 1,82, -, 0n)
v _ T (i,d0 + 1,0+, 0n)
m(?’laz‘za"'zl"’ﬂ) =
L mn(ilai“Z)"'ain"f'l)
with ®;(41,...,i,) € R™ (j = 1,...,n, m =

" . m;) being the jth (sub-)state vector of (41, ...
j=1""2

in); and
All A12 Tt Aln Bl
An Az o0 Asa Bs
A= _ " B=|
Anl A'n2 e Ann BTI

02[0102 Cn]

with Az, Bj, C; and D being constant matrices of

suitable dimensions, particularly, A;; € R™i*™i.

The transfer function matrix of the nD system (1)

is given by
G(z) =D+ CZ,(I - AZ,) 'B (2)

where z = [z1 2o z]fecr,

Z, = blockdiag{ z1 [im, , 22lms s --- » Zndm, }

The system is then said to be (structurally) sta-
ble 12) iff the nD characteristic polynomial d(z)
satisfies the condition d(z) 2 det(/—-AZ,) #0 Vz €

U™, where
Ur={zcC":|zn|<1,|z|<1,..., |z <1},
Now, let

A = blockdiag{611m,,02lmys- -, 0ntm, }
A=¢ §eRforj=1,2,...,k and
djeClorj=k+1,k+2,...,n
‘ (3)
Then the real/complex structured singular value of
a matrix M with respect to the given structure (3),
denoted by pa (M), is defined as
0, ifdet(J —MA)#0 VA
pa(M) =9 (min {5(A) : det(] — MA)=0})~"
otherwise
(4)
Note that the structured singular value pa(M) is
always defined and calculated with respect to a
specified structure A. Real uncertainty blocks §; 7.,
appear only when real uncertainties, e.g. parameter
uncertainties, come into the system.

The structured singular value p has the following

property 11)

5 < < inf @ -1
max 6(MU) < pa(M) < inf 5(DMD ) ()

where
D = {blockdiag{Dy,Ds,...,Dp}:
D; eC™*™,D; =D} >0}
U = {UeA : UU*=1,}
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3. The Main Results

It is clear that every component of Z, which
plays a similar role as A can be either real or com-
plex. Therefore, to soive the nD stability problem
using the p methodology, it suffices to define the
complex diagonal matrices
ibndm, }:

(Sj el
(6)

Equipped with these notations we can now state

Ao { A = blockdiag{8: In, » 021y, - -

the result on the stability of the system (1).

Lemma 1 1422) The nD discrete-time system (1)

is stable iff pa(A) < 1, where A is given in (6).

Based on Lemma 1 and the inequality (5), a Lya-
punov inequality can be readily established for test-

ing the stability of an nD system.

Lemma 2 The nD discrete-time system is stable if
there ezists a blockdiagonal positive definite matriz

X = blockdiag{X1, X2, ..., ..., Xn} such that

A" XA-X <0

Proof. Follows directly from pa(A) < infpep
g(DAD™!) and on noting that X 2 D*Dis a block
diagonal positive definite matrix. |

This result in fact coincides with the Lyapunov
equation condition obtained in 1), Though solution
algorithms for 2D Lyapunov equation have been
proposed in 4), no such algorithm exists for nD
(n > 2) case to the knowledge of the authors. How-
ever by using the p-toolbox of MATLAB 5) one
can easily find the solution X to the nD Lyapunov
equation or inequation.

We consider now the stability margins of A. For
a stable A, the individual stability margin oj, J =

1,2,...,n, of the jth dimension, ie. with respect

to the indeterminant z; is defined as

d(z)#0
Vg €£1L,k=1,...
and |2;| <1+ s;

oj = Sup o k#j (1)
It is clear that for a stable system o; is a posi-
tive number. In the similar way, we can define the
yJad C
{1,2,...,n}, of the indeterminants z;,, k = 1,2,...,4

joint stability margin oj, g, 4> 171,72,

Sj1darda | GE)FD

V%) € L,k ¢ {1,020 e ks
and 25| < 14 85, jor i

ke {j1,d2,--dq}

Oj1.dzsmde — SUP

(8)
Note that, by the definition, o;, j,,..j, 18 indepen-
dent of the order of 71,72, .., Jq- The joint stabil-
ity margin oy 2, of all the indeterminants will be
called the total stability margin of the system and is

denoted by ¢ for notational simplicity. Obviously,

d(z2) £0V|3| <1+s,7=12,...,n}
(9)

The purpose of the rest of this section is to give

o=sup{s:

a small p test for finding out (exactly) the stabil-
ity margins. We begin with the calculation of o;
and then come to the general joint stability mar-
gins 7j, j,,....;, and the total stability margin of the

system.

It is clear that o; can be equally represented as

d(2) #0
o;j=supl V|%|<Lk=1,...,nk#]
and |(1+3j)_lfj| <1

(10)
To determine o;, we introduce the selector E; which
is the jth block column of the identity matrix hav-
ing the same block dimensions as the matrix ATt
is clear that premultiplying A by E7, the transpose
of E;, yields the jth block row of A

. A
EjA = [Aj]_ Ajz . AJTL] = A‘f‘,j
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and similarly, post-multiplying A by E; yields the
jth block column of A denoted A, that is why we
call £; a selector. Also, premultiplying E3 by Ej

yields the matrix

0 0

EE 25,;=| E |, and ;A= | Ay |
0 0

(11)

j—1
where the zeros above B} and A, ; stand for ( —
mz) X m zero matrices, whereas those below E7
T -
and A,.; stand for (}_p_;, M) X m zero matrices.

Similarly,

EE£5,;=[0 E 0],and AS.; = [0 Acs 0]

(12)
Furthermore, we introduce the matrices
[ BiAn Bidie BrAin
. s 432‘.421 ﬂzz.%z )62/.4‘211 (13)
L ,BnAnl ﬁnAnZ ﬁnAnn
[ B1An Bedre BrAin
A | BrAn B2Az BrnAan
Age = . . . (14)
L ﬁlAnl ﬁ2An2 ﬁnAnn

then, from det(I — UV) = det(I — VU) we get

ds(z) 2 det(I — ApcZn) = det(I — AZnp)
= det(I — ZnpA) = det(I — ZnAp.)
= d(zp) (15)
where

zg = [Bizy Baza ... Buza)"

ZR:B = blOdelag {6121 Im1 >ﬁ2z21m2: R ﬁnznfmn}
(16)

Hence, [21 22 .. Zn ]T is a root of d(z) iff

(2022 oo 2 )T = [BTY2 Ba ' - By 1°

is a root of da(z). da(z) will have smaller and
smaller roots by increasing 3; > 1. Hence, to de-

termine the stability margin o;, we fix all B¢ =1

k=1,2,...,5—1,7+1,...,nbut increase 3; from
1 to a certain positive number fjo to be specified

below. Since [21 Z2 --- Zn ]¥ is a root of d(z) iff

N 1 4 . 1T
[71 22 - Zn . 21 B Y3 2j41 .- 2n ]
is a root of dg,(2) = det(I — Ap, rZ,) where

All A12 Ces A]_n
Ajan Ajae Aj—1n
Apir=| BiAn Bidje Bidjn | »
Ajvia Ajni2 Aifin
L Anl An2 . Ann

- an

from equation (10) we readily realize that o; =

B;0— 1 where 3; ¢ is the minimum positive number

of 8; > 1 such that

min {max{|z¢|} : det(f — Ap; o riin) = 0} =1

(18)

The following theorem characterizes the stability

margin ¢; in terms of the structured singular value

of a certain matrix M;(w).
Theorem 1 The single stability margin o; of the

system (2) is given by

oj=inf {w >0 : pa;(M;(w)) > 1}

where
A E.
M; = ! 19
J(w) [wE}‘A 0 :l (19)
A; = {A; =Dblockdiag{ Zn,8In; }, 95 € R}

Proof. For notational simplicity, we drop w and
denote M;(w) simply by M;. Using the Schur for-
mula of the determinant we can easily show that

for Aj € A;

det(] — M;A;)

I—AZ, —E;i;
= det E;d;
—wEiAZ, I

det(I - (A + E;(8;w)E;A)Zn)
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From the definition of pa; (M;) it follows that

Hay (M_‘r) <1,

= det(l — (A+ E;8,E;A)Z,) #0

= pa (M) >1

¥ lzk| <1 and —w < <w

where d; = d;w. From (11) and (17) we have
A+ ch?;E;‘A = A5; R

where 8 =1+ 4; with —w < 8 <w.

To complete the proof we show in the following
that Ag, r is stable for all 1 < 85 < By iff it is
stable for all 8} = 1+ &; with —(Bjo—1) <4 <
(80— 1). Indeed, Since [1, Bio] C [2—Bi0 > Bial
Vﬁ;,o > 1, the “if” part is obvious. To show the
“only if” part, we make first the claim that A is

stable iff A, and Ag. are stable for all

B=[xl %1 +1)7.

The second claim we make is that A is stable iff
Ap, and Ag . are stable for all B with ||B]lee £ 1.
We consider now the “only if” part. It is clear
that for every B;0 > 1 there exists a &5 > 0 such
that 3; = 1+ ¢;. Hence, we show only that the
stability of Ag, » with 8; =1+ 48} > 1 implies also
the stability of Aﬁ; ~ with g, =1 - &% Indeed,
when 0 < &} <1, B; = 1-45 €[0,1). Hence,
|85] < 1 and the condition of the second claim is
satisfied. Stability of A thus implies that Aﬁ} - 18
stable. When 1 < 85 <2, 8; =1~ & € [-1 ,0).
In this case the first and second claims ensure that
Apg: - is stable as long as A is stable. For every 6; >
2, there exists uniquely a positive Sj =05 -2 such
that —0; =4; — 1= 6 +1 2 3;. Hence, stability
of Aﬁ;_,r is equivalent to that of AG,-,T‘ Since 53- <
|85] = &}, the later is implied by the stability of
Ag; -

The previous analysis shows that

BA; (MJ‘) >1

e det(I— A, Zn) =0

for some z € C™ with ||z]|c < 1 and §; = w, and.
the infimum of all such w is ;. This completes the
proof. [ |

To calculate o;, j,,....j, We use the matrix

e

E.

J1.d20--10q

(B, B - Bl (20

Theorem 2 The joint stability margin 0j, j,,....5,

of the system (2) is given by

. w>0
Oj1.das-da — inf
KA daeiq (Mj, ja,..nge(w)) 2 1

where

A Ej11j2s-~--jq
A0

My i (W) = [ W

J12320-000dg TRG1.320-s Jg

Ajyjarz, & ding {zn, 8Ly, 6Ty s -+ 00m;, }
with Mjy 5o, 5 = Eke{j1,j2,~--,jq}mk and § € R.

The proof for Theorem 2 is similar to that for The-

orem 1 and is omitted.

Theorem 3 The total stability margin of the sys-
tem (2) is given by

o= ——1—~—1
pn(A4)

where A is given in (6).
Proof. In this case, ¢ = n, and we can take jx = K,
k= 1,2,. R 8 Thus Ejhjz.u-,jn = Im and

A I, |a
Mjl,jz,u-,jn(w) = |: wA 0 ] = M(w)

Djygarnnin = diag {0Im,,0Im,, - - 0Ly 3 =8Im

A+T'UEjl.:iz.u-,jnAjl:jz,---,jnEf A= (1+6’)A

J1,3250--20n

where —w < §' < w: From

palad) = |alpa(4)




we readily see that the minimum w making pa [(1+
§)A] = 1 is given by (1 +w)ua(A4) = 1. Hence
w= W_\l a5 — L |

Note that Lemma 1 is a special case of The-
orem 3. For positive total stability margin, i.e.
o > 0, pa(A) < 1 so the system (1) is stable.
The value of ¢ characterizes the robustness of the
stability. On the other hand, negative value of o
means that pa (4) > 1 and the system is unstable.
The value o indicates how far away for the system
to be stable. Therefore, we see that the p-analysis

approach provides more insights to the nD stability

analysis than just giving a simple stability test.

4. Concluding Remarks

The stability analysis problem for nD systems
characterized by state-space models has been in-
vestigated by using p analysis approach. It has
been shown that the problems of stability test and
stability margin computation for an nD system de-
scribed by Roesser model can be formulized into a
set of p analysis problems in a unified way, thus
can be solved effectively by applying the available
si-toolbox of MATLAB ).

It is noted, however, that only the lower and up-
per bounds for x can be obtained by using the p-
toolbox. The upper bound of p provides a lower
bound for the stability margins and the correspond-
ing minimizer D in 5 can be used to construct a di-
agonal Lyapunov function. The lower bound of u
provides an upper bound for the stability margins.
Numerical examples show that in certain circum-
stances the lower and upper bounds of p can be
equal. We shall address this issue in a full version
of this paper later.

Although in this paper only the stability prob-

lems of systems described in Roesser model have
been discussed, the same problems of nD systems
described by other kinds of state-space models can
be also investigated bjf transforming the models

into corresponding Roesser models.
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