計測自動制御学会 東北支部 第 210 回研究集会(2003.7.16) 資料番号 210-3

円筒波光源計算機ホログラムによる CT 画像の立体表示 Holographic Visualization for CT image using cylindrical wave front

〇田村 政裕*, 大坊 真洋*, 田山 典男*

OMasahiro Tamura*, Masahiro Daibo*, Norio Tayama*

*岩手大学工学部

*Faculty of Engineering Iwate University

キーワード: 円筒波 cylindrical wave front), 畳込み積分 (convolution), フィルター化逆 投影法(Filtered Back Projection), ホログラフィ(holography)

連絡先:〒020-8551 盛岡市上田 4-3-5 岩手大学工学部電気電子工学科 大坊 真洋,
 Tel.: (019)621-6983, Fax.: (019)621-6983, E-mail: daibo@iwate-u.ac.jp

1. はじめに

X線 CT 装置は, 医療診断, 工業製品の非 破壊検査に使われている. X線 CT 画像を立 体的に再生する手段として, 現在はコンピュ ータグラフィクス(CG)によってモニタ上に 表示されるのが一般的である. しかし CG は 視差効果がなく, 心理的に立体を感じるもの であり, 生理的な立体感が得られない. 一方 ホログラムならば同時に多方向からの立体 画像を再生することができる. ホログラムは 実際の物体と同じ波面を再現することが出来 る.

ホログラムを作成する方法として計算機 ホログラフィ(CGH)がある. CGH は実際の 光の干渉現象を利用して作成するのではな く,計算で求めることができる.しかし X 線 CT 画像を再生するためには,膨大な CT の計算と CGH を処理しなければならない. そこで本論文では,X線 CT から得られたデ ータを CGH に変換するために,CTのX線 投影線に対応した直線状の円筒波線光源か ら直接的にホログラムを生成し,CT 画像を 立体表示する方法について述べる.

2. 原理

ホログラムは物体から放射される物体光 と参照光との干渉縞を記録するものである. 計算機ホログラムは、ホログラムを実際の光 の干渉現象を利用して作成するのではなく、 計算によって求める.この計算機ホログラム を CT と組み合わせ、3 次元 CT の結果を空間 に立体表示することを試みる. CT スキャン された投影データをホログラムに変換する 方法として,物体の個々の点から放射される 点光源からの変換があるが,本報告では CT スキャンするX線経路に沿って放射される 線光源からのホログラムへの変換方法につ いて述べる.線光源からホログラムの計算が 算 単になり,従来よりも短時間で生成できると 考えられる.それは直線状に均一に光る光源 を仮定し,それを投影データの値に対応する 強度で発光させ,参照光と干渉させてホログ ラム面に記録する.それによって従来必要で あった投影データから仮想物体を生成する 過程が不必要となる.

図1 CTとCGHのモデル

CT のアルゴリズムとして FBP (Filtered Back Projection)を採用する. FBP は, X 線 CTによって得られた投影データ pに再構 成関数 H(t)とをコンボルーションし逆投影 する方法である.図1において,点AはX線 光源,点BはX線ディテクターの位置である. ABは投影の際にx軸を中心に角度 θ pだけ回 転しており C 点の z 座標は0 とする.AB に 沿ってX線投影した投影値を $P(\theta_p,t)$ とする と再構成関数H(t)とのコンボルーション $q(u, \theta_p)$ は式(1)で表される.

$$q(u,\theta_{P}) = \int_{-\infty}^{\infty} H_{\varepsilon}(u-t)p(\theta_{P},t)dt \qquad (1)$$

そして $q(u, \theta_p)$ の振幅でX線経路に軸を有 する円筒波 W_p と, axis した平面波の参照光 W_r (2)をホログラム面で干渉させる. ここで kは波数である. A_r は参照光の振幅で ϕ_0 は 初期位相である.

$$W_P(u,\theta_P,r) = \frac{q(u,\theta_P)}{\sqrt{r}} \exp\{i(kr + \phi_0)\}$$
(2)

$$W_r(\theta_r, y_c) = A_r \exp(iky_c)$$
(3)

ホログラム $h(x_c, y_c)$ は振幅の 2 乗の絶対値 を記録する.その成分の中の直流成分を除去 し有効成分の $\Re(W_P W_r^*)$ を記録する.ここで \Re は実数部を意味する.

$$h(x_c, y_c) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Re \left(W_p W_r^* \right) d\theta_p \qquad (4)$$

そして X 線の投影経路とホログラムの位置関係を決めておくことにより式(5)のホロ グラムの位相 **W**はあらかじめ計算すること が可能である.

$$h(u,\theta_p) = \frac{A_r}{2\pi} \int_{-\pi}^{\pi} \frac{q(u,\theta_p)}{\sqrt{r}} \cos\left\{\frac{2\pi}{\lambda} (r - y_c \sin\theta_r) + \phi_0\right\} d\theta_p (5)$$

ホログラムの濃度は投影値 $P(\theta_p,t)$ と再構成関数H(t)とコンボルーションした $q(u,\theta_p)$ とΨを掛け算してそれらの総和によって得られる.それが式(6)である.

$$h(k) \approx \sum_{j=1}^{N} \Psi_{j} \left(H \otimes p(j) \right)$$
(6)

使用した再構成関数は式(7)で表され、この関数の形を図2に示す.

$$H(t\Delta u) = \frac{2}{\pi^2 (\Delta u)^2 (1 - 4n^2)}$$
(7)

図2 再構成関数

3. 結果

コンボルーションにより得られた値を振 幅とする,X線投影経路を軸とした円筒波光 源から発生する円筒波と、参照光をホログラ ム面で干渉させ、記録していく. 始めに CT の部分をシュミレーションした.小円の画像 をCTスキャンし逆投影した結果を図3に示 す.図3の左上の原画像を,様々な角度から 投影した投影データと再構成関数とコンボ ルーションし、逆投影した様子を示す. 左下 が 9 方向, 右下が 180 方向から逆投影した 画像である.投影方向数を増加するほど,再 構成された画像の再現性が向上する. シミュ レーション実験に用いた原画像(barbara. 128×128 画素)を図4に示す. これを 256 画素の幅で、刻み角度1度で180方向から 投影し,投影データを得た.投影データに FBP 法による CT を施し、再構成した画像 を図5に示す.図5は比較用として示してお り、実際にはこの過程は不要である.

投影データに再構成関数を畳込み積分し,その線群を物体光源として,平面波の参照光と 干渉させたホログラムを生成した.線群を構 成している各々の線から発せられる物体光 は円筒波である.そして,ホログラムを再生 した時の再生像をシミュレーションした結 果が図6である.画像の所々にボケが生じて おり現時点では再現性は十分でない.

図3 CTによる小円の再構成

図4 原画像(Barbara 128×128)

図5 FBP法によるCTの再構成画像

図 6 投影データからホログラム
 に変換し、そのホログラムを
 数値計算で再生した画像

4. 考察

図6に現れているボケは物体光の初期位相を すべて0としているため,次で位相が合う場所 が周期的に発生しコントラストの劣化を引き 起こしていると思われる.一つの直線をコンボ ルーションしたデータからホログラムを生成 し再生した結果を図7に示す.方まで周期的な 濃度値の振動が続いている様子がわかる.これ を改善するため考えられる方法としては,物体 光の初期位相をそれぞれ違う値に振り分ける 方法を検討している.

図7 遠方まで振動減衰することに よるコントラストの劣化

5.むすび

物体の内部構造を空間に立体的に表出さ せるために、X線投影データをホログラムへ 変換する方法を提案した.X線投影データは、 その経路に沿って物体の濃度の積分値を反 映している.通常のCTは、X線投影データ を再構成関数と畳込み積分し、次に再構成面 へ逆投影することによって、断面画像を得て いる.この逆投影を線状光源によるホログラ ムに置き換えた.線状光源の位置は、X線の 投影経路に対応しており、その光源の明るさ を、X線投影データの畳込み積分値に比例さ せた.これにより、X線投影データからホロ グラムを効率よく生成することが可能とな ると考えられる. 今後は, 再生画像のボケの 原因究明と画像改善を行ない, 原画像とのホ ログラム再生像の誤差を定量的に評価する 予定である.

参考文献

- M. Daibo, N. Tayama, "Visualization of x-ray computer to-mography using computer generated holography," SPIE Proc, vol. 3457, pp. 134-145, 1998.
- 2)大坊真洋,田山典男,"計算機ホログラムとX線計算機断層法を統合した3次元可視化,"電子情報通信学会論文誌 D-II, vol. J82-D-II, no. 9, pp. 1420-1428, 1999.