定常流型人工心臓の体内埋込み型推定・制御システムの試作

A Prototype of Implantable Estimation and Control Device for Continuous-Flow Artificial Hearts

 ○ 花岡哲文,田中 明,吉澤 誠*,ポール・オレガリオ, 小川大祐,山家智之 †,仁田新一 †,阿部健一

OTetsubumi Hanaoka, Akira Tanaka, Makoto Yoshizawa*, Paul Olegario, Daisuke Ogawa, Tomoyuki Yambe†, Shin-ichi Nitta†, Ken-ichi Abe

> 東北大学大学院 工学研究科 *東北大学 情報シナジーセンター †東北大学 加齢医学研究所

Graduate School of Engineering, Tohoku University *Information Synergy Center, Tohoku University †Institute of Development, Aging and Cancer, Tohoku University

キーワード: 定常流型人工心臓 (continuous-flow artificial hearts), 差圧・流量推定 (pressure head and flow estimation), ARX モデル (ARX model)

 連絡先: 〒980-8579 仙台市青葉区荒巻字青葉 05 東北大学大学院工学研究科 電気・通信工学専攻 阿部研究室 Tel.: (022)217-7074, Fax.: (022)263-9290, E-mail: hanaoka@abe.ecei.tohoku.ac.jp

1. はじめに

人工心臓の制御や監視を行うには,血圧や血流量の 計測が不可欠である.しかし,血圧センサや血流計を 使用することは以下のような問題があるため,使用を できる限り避けることが望ましい.

- 1) 血圧センサ(圧トランスデューサ)の場合
 - 血栓の形成
 - 精度低下(ドリフト誤差)
 - 装着場所(装着時血管を傷つける)
- 2) 血流計(電磁流量計,超音波流量計)の場合
 - 電磁ノイズの発生(電磁流量計)
 - 超音波の血球成分への影響(超音波流量計)

- 再キャリブレーションが困難
- 精度低下
- 電力消費が多い

一方,人工心臓の血液ポンプを起動するモータの回 転数や供給電力は,差圧(揚程)やポンプ流出量と高 い相関がある.そこで,供給電力と回転数から,ポン プの差圧または流量を推定する手法が報告されてい る¹⁾²⁾³⁾.しかし,これらの手法は回転数が一定の定 常状態において検討されているため,ポンプ回転数が 経時的に変化する場合や,血管抵抗や血液粘性のよう な負荷の状態が変化する場合での推定について検討 されていない. 一方,著者らが先に提案した方法(ここでは時系列 モデル法と呼ぶ)⁴⁾では,血液ポンプのまわりの環 境変化,すなわち,血液粘性の変化あるいは流量や血 圧に関する動作点の大幅な過渡的変動が生じても,推 定値の精度を維持することが期待できる.この方法 は,モータの供給電力,回転数,および供給電力から 回転数までの定常ゲイン K を入力とし,差圧(ポン プの流入圧と流出圧の差)あるいは流量を出力に持つ ARX モデルを利用するものである.供給電力と回転 数は人工心臓の埋め込み後でも計測が可能であるた め,K は常時計算できる.K は環境変化を反映して 変動するので,K の導入により,同定時からの環境変 化に対する推定量の変動を補償すると考えられる.

本研究では,著者らが提案した時系列モデル法を, 体内埋め込み可能な小型 CPU ボード上に実装化する ことを試みた.すなわち,流路抵抗の変化によって圧 や流量の動作点の変化が生じた場合にも精度のよい 推定を行うための ARX モデルの同定法をモック循環 系において検討するとともに,実機上の評価を行うた めに,市販の CPU ボード上への推定システムの実装 を試みたので報告する.

2. 推定方法

過渡状態の推定を行うために Fig.1 および (1) 式で 表される ARX モデルを用いている.

$$y(k) = -\sum_{i=1}^{L} a_i y(k-i) + \sum_{j=1}^{7} \sum_{i=1}^{M_j} b_{ij} u_j(k-i+1) + w(k)$$
(1)

 Fig. 1
 ARX モデルによる差圧・流量推定法(時系

 列モデル法)

ここで k は $t = k\Delta t(k = 1, 2, 3, ...)$ を満たす離散時間 (Δt はサンプリング周期を表す), w(k) は残差, y(k)は出力(差圧 P(k), または流量 Q(k)), $u_j(k)$ は以下 に示されるような7種の入力とする.

$$u_1(k) = N^2(k) \times VI(k) \tag{2}$$

$$u_2(k) = N(k) \times VI(k) \tag{3}$$

$$u_3(k) = VI(k) \tag{4}$$

$$u_4(k) = N^2(k)$$
 (5)

$$u_5(k) = N(k)$$
 (6)
 $u_c(k) = 1 (バイアス頃推定用入力)$ (7)

$$u_{6}(k) = 1$$
 (7.1.7) (7)
 $u_{7}(k) = K(k)$ (8)

7 番目の入力 $u_7(k) = K(k)$ は,係数同定時と推定 システム運用時での環境変化を補償するために導入 されたものであり,供給電力からモータ回転数まで の定常ゲインに相当する量である.ここでは (9) 式 のような過去 n 個の $VI \ge N$ の平均値の比として 計算した.ここでは簡単のため,入力項次数 M_j を $M_1 = M_2 = ... = M_5 = M, M_6 = M_7 = 1, n = 100 \ge$ した.

$$u_{7}(k) = K(k)$$

= $\frac{N(k) + N(k-1) + \dots + N(k-n+1)}{VI(k) + VI(k-1) + \dots + VI(k-n+1)}$ (9)

本推定システムの運用手順としては,人工心臓の 埋め込み前に, y(k) および u_j(k) を測定し,(1) 式の ARX モデル係数 a_i, b_{ij} を一括型最小2 乗法で同定 する.係数の同定後,オンラインで計測される測定値 u_j(k) を用いて,(10) 式のように y(k) の推定値 ŷ(k) を 得る.

$$\hat{y}(k) = -\sum_{i=1}^{L} a_i \hat{y}(k-i) + \sum_{j=1}^{7} \sum_{i=1}^{M_j} b_{ij} u_j(k-i+1) \quad (10)$$

3. 推定手法の評価

3.1 実験装置の概要

実験は生体の循環系を模した Fig.2 のようなモッ ク循環系で行った.血液ポンプは TERUMO 製 CA-PIOX 遠心ポンプ (CX-SP45) を2組用いた.モータ回 転数の制御は専用ドライバを介して PC より行った.

3.2 同定実験

ポンプ差圧 P,流量 Q,電流 I,モータ回転数 N を サンプリング周期 100ms で計測した.また,モータ 供給電圧は 24V の定電圧である.

体内埋め込み後の推定システム運用時には,(1)式 の ARX モデルの出力は計測できないため,モデル 係数パラメータの同定はこれ以前に行うことになる. ARX モデルの次数 *L*,*M*は,推定値 ŷ(*k*)と実測値 *y*(*k*)の間の誤差が最小になるように,1~5の範囲で選 択した.

$$\epsilon = \frac{1}{n_D} \sqrt{\sum_{k=1}^{n_D} \{y(k) - \hat{y}(k)\}^2}$$
(11)

ここで, n_D は使用データの数を示す.

また,推定精度に間するもう一つの評価指標として,(12)式で表される測定値-推定値間の相関係数 r を算出した.

$$r = \frac{\sum_{k=1}^{n_D} \{y(k) - \bar{y}\}\{\hat{y}(k) - \bar{y}\}}{\sqrt{\sum_{k=1}^{n_D} \{y(k) - \bar{y}\}^2 \sum_{k=1}^{n_D} \{\hat{y}(k) - \bar{\hat{y}}(k)\}^2}}$$
(12)

ここで, ӯおよび ŷは, それぞれ y と ŷ の平均値で ある.

まず,同定用信号が推定精度に及ぼす影響を調べ

Fig. 3 抵抗変化時の同定用データ(上段から)回転 数 *N*, 電流 *I*, 差圧 *P*, 流量 *Q*

た.同定用データとして,モック循環系の流路抵抗の 変化を任意に与えたものと変化がないものを用意し た.計測したデータは長さが 600s であり,その前半 300s でモデルの同定を行った.後半の 300s では,同 定したモデルを使って差圧・流量の推定を行った.こ のとき,推定誤差 ϵ が最小になるような L と M の組 み合わせを,同定と推定を繰り返すことによって求め た.モータ回転数は,同定用信号としての持続的励振 条件を保つため,1200~1400rpm の範囲でランダムな 値をとるように変化させている.Fig.3 に,使用した 同定用データ(流路抵抗を変化させたもの)を示す.

Fig. 5 抵抗変化時の差圧推定(抵抗変化を含まない データで同定した場合)

Fig. 6 計算された K の波形

抵抗変化を含んだ別の推定データを用いて,差圧・ 流量推定を行った.抵抗変化を含んだ同定用データ を用いて差圧推定を行った結果を Fig.4 に,抵抗変化 を含まない同定用データを用い差圧推定を行った結 果を Fig.5 に示す.流量に関しても差圧の場合と同様 の手順で推定を行った.この結果を Fig.7, Fig.8 に示 す.推定誤差・相関係数の結果をまとめて Table1 に 掲げる.

Fig. 7 抵抗変化時の流量推定(抵抗変化を含むデー タで同定した場合)

Fig. 8 抵抗変化時の流量推定(抵抗変化を含まない データで同定した場合)

Fig.4, Fig.5の差圧推定の結果より,同定時に抵抗
 変化を与えていないモデルで推定した場合では,抵抗
 変化によって生じたベースラインの変化に追従でき
 ておらず,推定精度は悪くなっていることがわかる.
 また,(9)式で表される抵抗変化の補正用の入力
 K(k)は,Fig.6のように算出されている.同図から,

Table 1 誤差・相関係数の結果

	同定用データ	推定誤差 ϵ	相関係数 r
差圧	抵抗変化有り	4.8mmHg	0.94
	抵抗変化なし	7.3mmHg	0.89
流量	抵抗変化有り	0.35L/min	0.9
	抵抗変化なし	0.87L/min	0.16

流路抵抗の変化に応じて K のベースラインに変化が 見られており, K は流路抵抗の情報を含むものと考え られる.これに対し,同定用データに抵抗変化が含ま れなかった Fig.5 の場合では, K に関する係数が正し く同定されず,流路抵抗の変化に伴う推定量の補正が なされなかったものと考えられる.

一方,流量推定を行った結果でも差圧推定の結果と 同様,Fig.7,Fig.8,ならびにTable1のように,流路 抵抗を変化させた同定用データを使った場合の方が, 変化がない場合よりよい推定ができた.

以上から,推定時に血管抵抗(流路抵抗)の変化が 起こった場合にも精度のよい推定を行うためには,そ の変化を補償するための入力 K をモデルに導入し, かつ,そのモデルの同定時に流路抵抗の変化を含んだ 適切な同定用データを使用しなければならないこと がわかる.

4. 小型推定システムの構築

4.1 ハードウェア構成

Fig. 9 H8/3048F CPUボード

実システム上での評価を行うため,安価で容易に 入手できる CPU(日立製作所,H8/3048F)を搭載し た Fig.9 のような市販の CPU ボード(秋月電子通商,

-4-

AKI-H8/3048F)を使用し,小型の推定システムを構築した.

推定システムとして使用するにあたり,外部イン ターフェースは,電流,回転数計測用のアナログ入力 ポート 2ch,ならびに計測値,推定値送信用のシリア ルポートを用いた.推定システムの概要を Fig. 10 に 示す.

4.2 推定実験

前節の計測システムで同定実験を行い,ARX モデ ルパラメータの同定を行った上で H8/3048F を使った 推定を行った.前節の議論から,同定用データには, 抵抗変化の情報を反映させるために,流路抵抗の変化 を含んだデータを使用した.

 Fig. 11
 実システムによる抵抗変化時の流量推定

 結果

推定用データとしては回転数が一定の定常状態下 で流路抵抗を変化させたものを用いた.流量の推定 結果を Fig.11 に示す.このとき,相関係数rは0.91, 推定誤差 ϵ は 0.26L/min となり, 抵抗変化時の推定が 良好に実行されていることがわかる.

5. おわりに

本研究では,人工心臓用血液ポンプの駆動モータの 電力・回転数・平均電力に対する平均回転数の比*K* を入力とする ARX モデルに基づく差圧・流量推定法 (時系列モデル法)の有効性を検討した.このモデル の同定を,データに流路抵抗の変化を含むものと,含 まないもので行い,両者の差圧・流量の推定誤差およ び相関係数を比較した.その結果,流路抵抗の変化を 含むデータで同定した方が,含まないものより推定精 度が向上することがわかった.以上のことは,入力と して K を導入した効果により,このモデルが流路抵 抗の変化による動作点の大幅な変動を補償すること ができることを示すものである.

また,市販の安価な CPU ボード上に,本推定法を 実装した小型推定システムを製作し,その推定動作が 有効であることを確かめた.

推定精度に関係する環境変化としては,血液の粘性 抵抗変化も考慮する必要がある.今後は,Kが持つ情 報に粘性抵抗変化と流路抵抗変化とがどのように関 係するかを確かめる必要がある.

また, K が環境変化のみを適切に反映することが 理想であるが,実際には推定値が電流や回転数に含ま れる雑音に敏感であり,これが誤差の要因となってい る.したがって,これを吸収し,かつ環境変化のみを 適切に反映するような電力・回転数に関する(9)式 とは別な関数 K(VI, N)を適用してみることが必要で あると考えられる.

参考文献

 1) 脇坂佳成, 奥薗康輝, 妙中義之, 近成賢一, 増澤 徹, 中谷武嗣, 巽 英介, 西村 隆, 武輪能明, 大野 孝, 高 野久輝:循環補助用遠心ポンプの血液流量推定 法の開発と評価, 103/106, 人工臓器 26(1997)

- 2) 築谷朋典,赤松映明,西村和修:磁気浮上式遠心 ポンプの流量測定法,98/102,人工臓器26(1997)
- Akio Funakubo, Shahriar Ahmed, Ichiro Sakuma, Yasuhiro Furuki : Flow Rate and Pressure Head Estimation in a Centrifugal Blood Pump, Artificial Organs26(11), 985-990(2002)
- M.Yoshizawa, T.Sato, A.Tanaka, K.Abe, H.Takeda, T.Yambe, S.Nitta, Y.Nose: Sensorless estimation of pressure head and flow of a continuous flow artifical heart based on input power and rotational speed, ASAIO Journal, 443-448(2002)