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Abstract The equivalence between the standard control problem and the model-matching problem without coprime

factorizability of plants is presented.

1 Introduction

The objective of this paper is to show the equivalence be-
tween the standard control problem and the model-matching
problem without the help of coprime factorization.

In the classical case, that is, in the case where there exists
a doubly coprime factorization for every stabilizable plant, it
is known that each problem can be recast as the other prob-
lem [F87].

On the other hand, for some models of control systems,
it is not known yet whether or not a stabilizable plant al-
ways has its doubly coprime factorization. The multidimen-
sional systems with structural stability is one of such mod-
els [Lin01, Lin99]. Further it is known that there are models
such that some stabilizable plants do not have coprime factor-
izations [AB5]. In the case of neutral systems for fractional
exponential delay systems, methods to find doubly coprime
factorizations are still under study [BPO1].

Under these circumstances, Ball and Malakorn in [BM02]
have recently stated “the reduction to the model-matching
form is not obvious since the notion of coprime factorization
splits in several independent ways in the nD case.” This paper
gives its answer and presents that the standard control prob-
lem can be reduced to a model-matching problem even if we
do not consider the coprime factorizability (see Theorem 2.1
and Section 5).

2 Preliminaries

The approach we use in this note is the coordinate-free
approach [894, §5§92, MAOI, M02b, M03]. The coordinate-
free approach is a factorization approach [DLMS80, VSF82]

without coprime factorizability. We consider that the set of
stable causal transfer functions is a commutative ring .A. The
total ring of fractions of A is denoted by F; that is, F =
{n/d|n,d € A, d:nonzerodivisor}. This is considered as
the set of all possible transfer functions. Let Z be a prime
ideal of A with Z # A such that Z includes all zerodivisors.
Define the subsets P and Pg of F as follows:

P={e/bcFlac A be A\Z},
Ps={a/be Flac Z, be A\Z}.

Then, every transfer function in P (Ps) is called causal
(strictly causal). Analogously, if every entry of a transfer ma-
trix is in P (Ps), the transfer matrix is called causal (strictly
causal).

The identity and the zero matrices are denoted by I, and
Ogxy, respectively, if the sizes are required, otherwise they
are denoted by I and O. A matrix is said to be nonsingular if
its determinant is a nonzerodivisor, and singular otherwise.

We consider two types of feedback systems.

The first one is shown in Fig. 1 (cf.[DFT92, Fig. 1.2]).
The transfer matrices G and K over F represent a generalized
plant and a controller, respectively. To make the description
precise; we let m and m’ denote the number of inputs of G
for u and w, respectively, and let n and n’ the number of out-
puts of G for y and z, respectively. The sizes of G and K are
(n +n’) x (m +m’) and m x n, respectively. Decompose G
into four blocks as follows:
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The input-output relations are:




G + GuK(I - GzzK)—lG'gl
I{(I - GQQK)_IGgl
(I —GuK) 'Gay

Gu(f - Kng)_l
(I - KGap)™!
G‘ZQ(I - .KGQQ)_I

G12K(I - GQQK)—I
K(I — GQQI{)_‘I (2)
(I — Gy K)™!

Giiw + Giou,
y = Ggl’w + ngu -+ s,
~u = Ky+wv.

Then the transfer matrix from [w v v2]* to [z u y ]! is given
as follows:
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Iy -G O Gy O O
(G K)=| 0 Iy -K o L, O],
O -Gy I, Gy O _ I,

which is equal to (2), provided that I — K (', is nonsingular.
In particular, if the transfer matrix ©(G, K)) is over A4, then
we say that K stabilizes G and that K is a stabilizing con-
troller of G. If a stabilizing controller of G exists, then G is
called stabilizable. The other feedback system can be consid-
ered as a part of the first one and shown in Fig. 3 (cf.[DFT92,
Fig. 1.3]). The transfer matrices P and K over F represent
a plant and its controller, respectively. The plant P has m in-
puts and n outputs. Let H(P, K) denote the transfer matrix
from [v5 vt ]*to [yt ut], which is equal to

(I+PK)™!
K(I+ PK)™!

—P(I+KP)~!

(I+KP)~1 G

provided that I -+ K P is nonsingular. If I+ X P is nonsingular
and H (P, K') is over A, then we say that K stabilizes P and
that K is a stabilizing controller of P. Also if a stabilizing
controller of P exists, then P is called stabilizable.

‘We suppose that the norm has already been defined for ma-
trices over A. It can be, for example, the Ho-norm. Since the
norm is used only in order to introduce the problem, we do not
mention its concrete definition,

Now two problems are defined as follows:

Problem 2.1 (Standard Control Problem) Consider the feed-
back system of Fig. 1. Causal transfer matrix G is given. As-
sume that G is stabilizable. Find a causal transfer matrix K
that minimizes the norm of the transfer matrix form w to z
under the constraint that K stabilizes G.

Problem 2.2 (Model-Matching Problem) Consider the sys-
tem depicted in Fig. 2. Causal transfer matrices T, T, and T;
over A are given. Find a causal transfer matrix Q over A such
that the norm of Ty — T5QT5 is minimum.

For the further detail of the problems, the reader is re-
ferred to [F87]. It is known that the model-matching problem
and other many problems such as the tracking problem and
the weighted sensitivity problem can be considered as a stan-
dard problem [F87, Zam81, Kwa85, VI84]. Also it is known
that if every stabilizing controller has a doubly coprime fac-
torization, the standard control problem can be considered as
a model-matching problem[F87]. This paper will remove the

requirement of the existence of the doubly coprime factoriza-
tion. Accordingly the result of this paper is that the standard
control problem and the model-matching problem are equiva-
lent even if the doubly coprime factorization is not employed.
This is written as a following theorem:

Theorem 2.1 The model-matching problem can be modified
as a standard control problem. Conversely the standard con-
trol problem can be modified as a model-matching problem if
Gaa is strictly causal.

In the case A = RH,,, the first statement of the theo-
rem is given in Chapter 3 and the second is in Chapter 4 of
[F87]. The first statement is proved analogously to the case
of A = RH. In fact, the model-matching problem can be
easily recast as a standard control problem by letting

T, T
G::[ 1 13
T3 O

(see [F87, p.19]). Thus we will need to show the second state-
ment, which will be proved in Section 4.

] and K := —Q 4

By assuming the strict causality of G5, we have that ev-
ery stabilizing controller is causal (Proposition 6.2 of [MAO1})
and that the closed loop is well-posed{ZDG96, p.119] for ev-
ery stabilizing controller (Proposition 5 of [M(2a]).

Before finishing this section, we state the relationship be-
tween ©(G, K} and H{—G4z3, K). A straightforward calcula-
tion gives the following matrix equations:

0 G
oG, K) = |0 I: H(ngg,K)[Gzi © I”J
: O In O
I, O
Gui O O
+|lo o o (5)
0O 0 o
and
0 0
H(—GQQ,K)z[O © I”}@(G,K) O In|. (6)
O In O L o _

3 Previous Result

Here we briefly outline the parameterization method
of [M02a]. Let H be the set of H{P,C)'s with all stabiliz-
ing controllers . Let Hy be H(P,Cy) € Almtnr)x(mtn)
where Cj is a stabilizing controller of P. Let £2((}) be a ma-
trix defined as

o= (s[5 &l)o(-[3 )
(M

-




- with a stable causal and square matrix @ in 4(mF7)x(mdn)
Then we have the identity

H = {Q(Q) | Q is stable causal and Q(Q) is nonsingular}

[MO2a, Theorems 4.2 and 4.3]. Then, from (3), any stabiliz-
ing controller has the form 9219521, where 27 and 99 are
the (2,1)- and (2,2)-blocks of £2(Q), provided that Q22 is non-
singular.

The parameterization above is given by a parameter ma-
trix € without coprime factorizability of the plant.

4 Proof of Theorem 2.1

In this section we present the proof of Theorem 2.1.
The first step is to give a generalization of [F87, Theo-
rem4.3.2]. Then we prove Theorem 2.1.

Theorem 4.1 Let G and K be a generalized plant and its con-
troller over F, respectively. Decompose G as in (1). Suppose
that G is stabilizable. Then K stabilizes G if and only if K
stabilizes —Gag.

Proof. (Only if) Suppose that K stabilizes G. Then ©(G, K)
is over A. By (6), H(—Ga2, K) is also over A. Thus K also
stabilizes —Gog.
(If) Because G is stabilizable, there exists a stabilizing con-
troller of G, say Kp. As in “(Ouly if)” part, this Kj is also
a stabilizing controller of —G'a2. Let ©g and Hy be ©(G, Ky)
and H(—Gag, Ko), respectively, both of which are over A.
Suppose that K is a (possibly different) stabilizing con-
troller of —Gaa. Then by the result of Section 3, there exists
a matrix @ over A such that the following holds:

O O
O O
XQ<H0[O ) J)+Ha

By virtue of (5), ©(G, K) is expressed as (8) (see the bottom
of this page). A simple calculation shows that (8) is equal to
(9) The matrix above is over .4 because both @ and © are.
Hence K stabilizes G. m]

From the proof of Theorem 4.1, we see that every ©(G, K)
with a stabilizing controller K is given in the form of (9) with
some Q of Alm+nlx(m+n)

Now we are in a position to prove Theorem 2.1.

Proof of Theorem2.1. We have shown the first statement
of the theorem after the description of Theorem 2.1. Thus we
here show the second statement.

Suppose that K stabilizes a generalized plant G and that |
(99 is strictly causal. Let ©g be as in the proof of Theo-
rem4.1.

From the result of Theorem 4.1, every @{G, K') with a sta-
bilizing controller K is given in the form of (9). Thus the stan-
dard control problem is equivalently to find the matrix  over
A that minimizes the norm of the matrix of (9) multiplied by
the matrix [[,y O O] from the left and multiplied by the

matrix [ I, O O] from the right. Now let
Ty
Tvi=[I, O 0]6| O
O
= Gy + G12Ko(I — Gy Ko) ™' G, i
O 0O O 0O O
Ty=—[Ly 0 O]|e-]0 0 o|l||0 I
o o0 I, I, O
= —[G1aKo(I — G2Ko)™' Gra(I — 09_32)"1],
I.
T3 := {O © I“J B — L, g 0]
o I, O
o o of)|o

B [ (I — GpaKo)™tGa ]
Ko(I — GnKp) 'Gn

Since every element of T3, 75, and T3 is an element of &,
the matrices 11, T, and T3 are over 4, We now see that the
standard control problem is to find (2 that minimizes the norm
of T} — T50Q)T3, which is a model-matching problem. Once
we know this Q) by solving the model-matching problem, we
can know the solution of the standard control problem, that is,
the transfer matrix K by letting K := Q1€0,3, where Oy,
and g, are the (2,1)- and (2,2)-blocks of Q{Q) in (7). Note
that because —Gaz as well as Goa is strictly causal, Qg5 is
nonsingular and K is causal by Proposition 5 of [M02a]. O

S Application

The result of this paper can be applied to models that can
be expressed under the coordinate-free approach,

Let us consider the multidimensional systems with struc-
tural stability. To apply the coordinate-free approach, .4 and
Z are given as follows:

0 G G O O
m [ 0 — 0
O 0O O In O I, O
I, O o 0 0
O 0 O 0 0O 0O 0 O
O 0 I,
-0 0 O o I, Q[O oo Go—1|0 I, O] +6,. (9)
0o 0 I, I, O i 0O O O

LUN




{a/bla,be Rlzy,...,z), b#0in T },
4
= > mA={e/bc Ala,b Rz, ..., 2],

i=1

b
fl

the constant term of a is zero. },

where 3 denotes the closed unit polydisc.

So far it is not known yet whether or not all stabilizable
plants of the multidimensional system have both right- and
left-coprime factorizations[Lin01]. Even so, by the result of
this paper, we can consider that the standard control problem
and the model-matching problem are equivalent. This is an an-
swer of the statement given by Ball and Malakorn in [BMO02]
(appeared in Section 1).

Next let us consider the neutral systems for fractional ex-
ponential delay systems [BPO1]. This has analogous situa-
tion. The method to find doubly coprime factorizations for
this model is still under study [BPO1]. Even so, the coordinate-
free approach can be applied to this model by letting A be A
of [BP01] and Z consist of all transfer functions f in A such
that lim_, o f is finite.

6 Conclusion

This paper has presented the equivalence between the stan-
dard control problem and the model-matching problem with-
out the help of coprime factorization. It should be noted that
the sizes of the parameter matrices of the Youla-KuCera param-
eterization [YIB76, K75) and the method of Section 3 are dif-
ferent; the later is larger than or equal to the former. The
method to find the minimum number of the parameters should
be investigated even though it is independent of the theme of
this paper.
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Figure 1: Standard Control Problem
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Figure 2: Model-Matching Problem
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Figure 3: Feedback System




