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1. Introduction

Since McGeer’s pioneering work of gravity driven
biped walker, more and more researchers take pas-
sive balance paradigm as a control scheme for legged
locomotion. They believe that legged machines
should be designed with structures that are nat-
urally stable, not requiring feedback of body pos-
ture. Inspired from cyclic leg swinging motion of
animals, Tompson and Raibert showed that a hip
string configured monopod robot can hop with-
out any inputs, provided with appropriately cho-
sen initial conditions 1). Francois and Samson,
Hyon and Emura respectively derived controllers
which enable the one-legged robot to converge to
passive running gaits 2) 3), As for quadruped run-
ning, Poulakakis et al. found that under a massless
leg assumption, there exists some energy efficient

gaits within a leg compliance profile, which stabi-

lize themself.4)

This paper is a direct extension of the paper
3). Based on a more realistic model than previous
studies, we aims to find passive quadruped run-
ning gait which contributes to energy-efficient run-
ning controller design. To simplify analysis, the
running model we use is confined in sigittal plane.
The physical legs are modeled as single back and
front virtual leg respectively. However, this simpli-
fied model is still involved with quite complex non-
linear dynamics that prevents analytical treament.
Therefore, a numerical gait searching method is ap-

plied in this paper.
2. Planar Quadruped Model

Figure 1 shows our planar quadruped model. Hip
joint provides leg rotation. Legs are connected to
torso through springs. Each leg includes upper and
lower sections connected via linear spring. To sum-

marize, leg has two DOF: a rotational one, a linear




Fig. 1 Robot model
one. The hip springs provide hip compliance.

The running of the robot has four different dy-
namics corresponding to each phase(fi:double legs
flight, f;:back leg stance phase, f3:double legs
stance, fy:front leg stance). A sequential combi-
nation of the phases results in the locomotion of the
robot. With Lagrange method, we built up math-
ematical model of each phase. As there are no in-
puts to the robot, the models can be described as
nonlinear autonomous system:

& = fi(z) (1)

(7;:17"'74)7

where @ = [0, 62, ¢, &, 2,71, 72, 01, 02, &, T, 2,71, 72).
As we can see from Fig.1, the model of robot can
be completely described by generalized coordinates
g = [61,02,9,7,2,71,7m2] € R". However, the DOF
of the phases is 5,4,3,4 respectively. Therefore the
variables which are not chosen as state variable in
Lagrange equation should be calculated using the
constraints subjected to the corresponding phase.
At landing, the foot of robot hits the ground,
which is treated as the transition between two suc-
cessive phases. This process is dealt with using an
inelastic impact model. As an assumption, mass-
With the

less toes are considered in our model.

method of Lagrange multipliers we derive the gen-

om

Fig. 2 Four examples of quadruped running gaits

eralized components of the impulse moment. Com-
bining this result with constraints subjected to state
after touching down, we can obtain the following

impulse equation:

Ty = h"i(m-) (j =1,-- r4) ) (2)

For the details, please see the paper 5).

3. Passive Gait

3.1 Poincaré’s Method

In our case a periodic running represents a cyclic
orbit. An important conceptual tool for under-

standing the periodic orbit of non-linear system is

the Poincaré map. It replaces an n** order continuous-

time autonomous system by an (n — 1)** order disc-
rete-time system. In order to define a poincaré’s
map for a legged system a reference point in the
cyclic motion must be selected and then the dy-
namics equations must be integrated starting from
the point until the next cycle. Therefore a periodic
running can be treated as root of function:

H(xzo) = F(zo0) — zo, (3)

where the function F' maps the initial point to its

corresponding point after one cycle. To solve the




root, we use Newton-Raphson method:

dwo = ~(EE @) (0
zp(n+1) = Kdxp+ Xo(n) (5)

3.2 Implementation of Algorithm

Quadruped running forms as a mix of continuous-
time dynamics, switching actions, and jump phe-
nomena. Its corresponding hybrid system can be

described as:

0 = g(=zvy) (7
zy = hile_,y.) (@G=1,-,4 (8

where, y is trigger variable which triggers the tran-
sition of different phases under the condition definded
by function g. Specifically it represents the dis-
tance of toe from the ground. The value of zero in-
dicates a touching down of foot, which triggers the
phase trasition. The transition process is defined
by fuction h;, which deals with both smoothed
changing of state varibales and stepped ones due
to, for example, leg touching down. z_, y_ refer
the value of x,y just prior to the phase transition
and x refers to the value just after the phase tran-
sition.  Based on this model, the jacobian matrix
used in (4) can be calculated as followed 6).

1)For continuous-time phases:

dfl:;no _ 6)’1
it 9z %o )

2)At the transition of two successive phases:

Tz, = Tx,_ — (f+ — [-)Tx, (10)

where

L.((g7) 9z ) |-z, (77) (

TEo = 7 Li((gy ) taz)l- f~ 1)

Wmo(to) =T 3 (12)

f-,f+ take values at the moment just before and
k
after phases transition respectively, 1, = [0--- 1 ---

and ty corresponds to the time of start point.

4. Result

Using the above algorithm, we found two kinds
of gaits shown in Fig. 3 and Fig. 4, both of which
include the four available phases. They differ with
the order in which system propagate throughout
the phases. In gait A, the front leg will hit the
ground first after a double legs flight phase, while
the back leg will hits first as for gait B. As re-
spected, the passive trajectories we found lose no
energy due to the sudden impact of leg’s touching
down (Fig. 5).
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Fig. 3 Gait A

Another finding is that all the periodic trajec-
tories are unstable, which is different from Poulak-
akis’s result. Although the motion starting from
the fixed point can continue for some steps (13 steps
as maximum), it falls finally. Extensive investiga-
tions of eigenvalues corresponding to the trajecto-
ries revealed that they all have eigenvalues whose
magtitude is bigger than unity. As Fig. 7 shows,
during first several cycles, system exhihits roughly
smooth curves. The uncontinuous change of phase
transition is not obvious. As the system have no
inputs, lost energy can not be compensated. With

the system proceeding forward, it deviates from the
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passive running gait more. We also found that
all the passive running gaits have sysmmetricity.
This observation agree with symmetricity result of
Poulakakis 4). Another intreresting observation is
that it seems that different kinds of gaits do not
exist under one profile. This fact disagree with the
fact found from legged animals.

To find various running gaits, more complex
model will be needed. Nevertheless, we believe the
results of the paper can be utilized to find efficient

running controller, which is left for future work.
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