計測自動制御学会東北支部 第 213 回研究集会(2003.12.12) 資料番号 213-18

マイクロ移動ロボットの製作と制御

Production and control of a micro moving robot

矢田真也^{*},斉藤克久^{*},森田巧^{*},伊藤嘉亮^{**} Shinya Yada^{*}, Katsuhisa Saito^{*}, Takumi Morita^{*}, Yoshiaki Itou^{**}

> *日本大学大学院工学研究科,**福島県ハイテクプラザ *Graduate school, Nihon University **FUKUSHIMA TECHNOLOGY CENTRE

キーワード:圧電素子(piezoelectric element),アクチュエータ(actuator), カンチレバー(cantilever)

連絡先:〒963-8642 福島県郡山市田村町徳定字中河原 1 番地 日本大学大学院工学研究科 機械工学専攻 メカトロニクス研究室 矢田真也, Tel.:(024)956-8774, E-mail:g15313@cc.ce.nihon-u.ac.jp

1. 緒言

バイオテクノロジ、ナノテクノロジなど 新しい技術に係わる研究が活発に行われて いる.これらの研究において,アクチュエ ータのマイクロ化は課題の一つで研究開発 の重要性が増している¹⁾.アクチュエータ のマイクロ化の研究として,新しい駆動機 構や新しい機能性材料の組み合わせによる 種々の方式のアクチュエータが取り上げら れ,研究・開発が行われている.マイクロ磁 気アクチュエータ²⁾,マイクロステッピン グモータ³⁾,マイクロ超音波モータ⁴⁾,マ イクロ圧電アクチュエータ^{5,6)},マイクロ静 電アクチュエータ⁷⁾,マイクロ流体モータ ⁸⁾などいろいろの方式のアクチュエータの 研究が報告されている.本研究では材料の 非線形性を利用したアクチュエータの研究 を行い,微細化を行うことを目的とした. 微細加工技術としてフォトリソグラフィ技 術を利用し,カンチレバーを製作する.製 作したカンチレバーの表面に圧電体をスパ ッタし,微細な移動ロボットを製作する.

2.アクチュエータの構成と動作原理

図1にアクチュエータの構成を示す.長 方形状の移動部にバイモルフ形の圧電素子 を取り付けたものである.図2に動作原理 を示す.圧電素子にある周波数の電圧を印 加すると圧電素子は振動する.振動変位は ヒステリシス特性を示す.圧電素子の共振 周波数に応じて移動体は左右に移動する. 一次共振の場合には図面上で左方向に,二 次共振の場合には右方向に移動する.

Fig. 1 Construction view of actuator

moving direction

moving direction

(b) Second mode of vibration

Fig. 2 Driving principle of actuator

2.1 移動現象の解析

移動現象の解明のために次のような仮定 をした.

バイモルフ形圧電素子の電圧 - 変位にお ける非線形性を図3に示すように直線で 近似する。

これらの直線は次式で表される。

$$Y_1(V) = \frac{1}{\delta^*} (aV - b) \tag{1}$$

$$\boldsymbol{Y}_{2}(V) = \frac{1}{\delta^{*}}(aV + b)$$
 (2)

ここに、 * は圧電素子に印加する最大電圧 に対応する変位である.

Fig.3 Nonlinear characteristics of piezoelectric element

駆動電圧に対する圧電素子の変形を一 様な荷重を受ける片持ち梁の変形とす る.

の仮定は,非線形のヒステリシス形状の ままでは解析的な取り扱いが困難であり, 上記のように直線近似することにより解析 的取り扱いが可能となる. については, バイモルフ形圧電素子の圧電方程式を用い て解析することも考えられるが,本研究で は,取り扱いを容易にするために駆動電圧 が印加された圧電素子の変形を一様荷重を 受ける片持ち梁の変形とした.一様荷重w で圧電素子の変形との調整を行う.一様荷 重を受ける片持ち梁の単位長さ辺りの荷重 をwとする.梁の固定端から×の位置の微

Fig. 4 Deformation and force by load w

移動体に働く力 Fi (x, V)は片持ち梁の変 位と角度から次式のように表される.

$$F_i(x,V) = w Y_i(V) dx \sin \alpha \qquad (3)$$

$$\alpha = \frac{w Y_i(V) x^2 dx}{2EI}$$
(4)

ここに,E:ヤング率 I:梁の断面二次モーメント である.

式(3)を梁の固定端から先端まで積分す ることにより移動体に働く総力が求められ る. は小さいとして,sin = とする ことにより式(3)は式(5)と表される

$$F_{i}(V) = \frac{\{wY_{i}(V)\}^{2}x^{2}dx^{2}}{2EI}$$
(5)

この式をY₁(V)とY₂(V)に分けて積分すると 以下の式が得られる.

$$F_{1}(V) = \frac{\{wY_{1}(V)\}^{2}}{8EI}l^{4}$$
(6)

$$F_{2}(V) = \frac{\left\{ w Y_{2}(V) \right\}^{2}}{8EI} l^{4}$$
(7)

F₁(V) - F₂(V) は圧電素子におけるヒステ リシスにより一周期の振動の間に圧電素子 が移動体を押す力となっている.

$$F_{1}(V) - F_{2}(V) = \frac{w^{2}l^{4}}{2EI\delta^{*2}}ab_{V}^{*}$$
 (8)

ここに, _V * は圧電素子に印加される最大 電圧である.圧電素子の駆動電圧と変位お よび一様な荷重 w を受ける片持ち梁の先端 の変位との関係から w を求める.

$$w = \frac{8EI}{l^4} \delta * \tag{9}$$

最終的に,圧電素子のヒステリシスによる カのアンバランスに起因する移動体への駆 動力は次式と求まる.この力は圧電素子の 振動の一周期間に生ずる力である.

振動を繰り返すことにより連続的な力の発 生となる.

$$F_{1}(V) - F_{2}(V) = \frac{32EI}{l^{4}} ab_{V} *$$
 (10)

後述の実験に用いた表1に示すようなパラ メータの圧電素子と駆動条件を使用した場 合に,一周期で発生する力は1.88×10⁻² Nとなる.この力を受け移動体は左右に移 動する.圧電素子の振動モードにより移動 する方向を変えることが可能である.

Table. 1 Parameters in estimating

	driving force
Parameter	Value
V*	60 V
а	6.67 × 1 0 ^{- 3}
	m m / V
b	0.1 mm
Е	5.5 × 10 ⁴
	N / mm²
I	0.216 mm ⁴
1	30 mm

3.実験

3.1 実験装置

図5に実験装置に示すように,バイモル フ形の圧電素子の一端を移動体に固定し, 片持ち梁とした.移動体はアクリル板上に 設置され,移動体とともにアクリル板が移 動する.アクリル板の下面には集電用の銅 線が設けられており,アクリル板が2本の 金属板上を走行する.2本の金属板から集 電用の銅線を介して圧電素子に駆動電流が 伝えられる.本体寸法は,長さ57mm, 幅30mm,高さ30mmである.重量は 6.6gである.

Fig. 5 Experimental equipment

3.2 実験結果

(a)速度特性

駆動電圧60V_{P-P},駆動周波数を10~ 2,000Hzとして周波数-速度特性を測定した.駆動入力波形は正弦波である.速度は 一定の標点間距離の通過時間より算出した 平均速度である.測定結果を図6に示す.

Fig. 6 Frequency characteristics of the actuator

片持ち梁の圧電素子の一次共振である3 40Hz近傍で前進(左方向移動)の最大速 度が見られ,二次共振である1650Hz近 傍で後進(右方向移動)の最大速度が得ら れている.この様に圧電素子に加える駆動 電圧の周波数により移動体は前進および後 進する.次に,一次共振および二次共振に おける速度と駆動電圧の関係を図7に示す. 用いた圧電素子では駆動電圧が60V以上 では速度はほぼ一定となっている.

Fig. 7 Change of moving speed by driven voltage

4.微細化

上記のアクチュエータを,カンチレバー を利用し微細化を行なう.図8に製作する 圧電アクチュエータの基本構造を示す.

Fig.8 Construction view of piezoelectric actuator

現在は圧電アクチュエーターの製作を行 っている途中である.図9に製作中のアク チュエータの写真を示す.

Fig.9 Photo of actuator

5. 結言

現在は圧電アクチュエーターの製作の段 階である.今後は圧電アクチュエーターが 完成後に作動実験をおこない,マイクロ移 動ロボットの製作を行なう.

参考文献

- 1) 樋口俊郎,マイクロアクチュエータの将 来展望,精密工学会誌,Vol.68,No.5, (2002),pp.629-632.
- 2) 丸野聡明,本田崇,山崎二郎,摩擦駆動 型電磁マイクロモータの特性改善,日本 応用磁気学会誌,Vol 24,No 4 - 2 (2000), pp.979 -
- 3) 青島力,マイクロステッピングモータ, 精密工学会誌,Vol.68,No.5,(2002), pp.637-640.
- 4) 春日政雄,飯野朗弘,鈴木賢二,鈴木誠, 自励振駆動を用いた超小型超音波モータの開発,精密工学会誌,Vol.64,No.8, (1998),pp.1117-11
- 5) 樋口俊郎,渡辺正浩,工藤謙一,圧電素 子の急速変形を利用した精密位置決め機 構,精密工学会誌,Vol.54,No.11(1988), pp.75-80.
- 6) 大越正弘,坂野進,三極円筒型圧電素子を用いたX-Y- 微動テーブル,日本機 械学会論文集(C編),Vol.62,No.596, (1996),pp.1392-1396.
- 7) 鈴森康一,静電アクチュエータ,日本ロボット学会誌,Vol.15,No.3 (1997),
 pp.342 -
- 5 近藤豊,丁向,横田眞一,バイモルフ形
 PZT 素子アレイを用いた薄型ぜん動マイ
 クロポンプ(片面駆動形の試作),日本機械
 学会論文集(C編), Vol. 68, No. 666,
 (2002), pp. 643 -