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Reconstruction of Neural Network Vehicle Model on Sloped Terrain
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Most farm mobile robot systems are not linear

Introduction

time invariant, and can be subject to nonholonomic
constraints. Therefore an effective approach must
be taken to measure the system’s performance.
Usually vehicle models are used for this purpose. A
kinematic model is usually applicable for slow
speed vehicles where effects of side forces can be
neglected (Ishida et al., 1998; Cordesses et al.,
2000; Roth & Batavia, 2002). However, a dynamic
model can take into account the lateral forces at
wheels, the mass of the vehicle, the mass moment
of inertia of the vehicle, and the location of the
center of gravity. So it was widely applied in farm
vehicle automatic navigation systems (Miller &
Steward, 2002; Kise et al., 2002). In addition, an
artificial (Al) model
developed by Ishii et al. (1998). But most of these

intelligence was also

models were developed to describe vehicle
behavior on the flat land where friction properties
were relatively constant.

On sloping ground, many factors influencing

tractor dynamics such as sloped terrain, uneven
implement load, soil conditions, and so on resulted
in developing an available model for sloped terrain.
In order to control a tractor along sloped terrain,
Bell (2000) introduced a form of bias estimation
his This

incorporated the information about implement load

into dynamic model. bias only
and terrain slope, but neglected other factors such
as soil conditions and tire configuration. So his
model could not precisely respond to inputs when
used to investigate the dynamic characteristics of
tractor on sloping ground.

Torisu er al. (2002) designed a neural network
(NN) vehicle model instead of dynamic or

kinematic model to express the input-output
relationship of vehicle motion on sloping land. But
the model could represent only the motion on the
specific slope and that the heading angle remains
restricted within -60°~60°. By reconstructing a
model that is accurate over a wider range, precise
expression of the vehicle’s dynamic characteristic

could be obtained. To attain this task the paper sets




out: (1) to reconstruct the NN vehicle model; (2) to
train the NN vehicle model with genetic algorithm
(GA) and back propagation (BP) algorithm; (3) to
validate the model; (4) to conduct field tests on
data acquisition and open-loop control on sloped

terrain.

II Reconstruction of vehicle model for
sloped terrain
1. Structure of vehicle model

In neural networks, as in all modeling problems,
we want to use the simplest network that can
adequately represent the training set. For a network
to be able to successfully generalize what it has
learned to the total population, it should have fewer
parameters than there are data points in the training
set (Hagan ef al., 1996). This is the principle for
formulating the NN vehicle model.

The architecture of the previous NN model was
6-6-6-3 which had 6 input and 3 output variables
together with two hidden layers of 6 neurons each,
whereas the reconstructed NN model was 7-6-5-3,
as shown in Fig. 1. The input layer, the first hidden
layer, the second hidden layer and the output layer
had 7, 6, 5, 3 neurons respectively. The input vector
is a combination of the control vector U, and state

vector Z, and the output vector is &, namely

T
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W] weight;
p & g, consecutive layer number;
i & J, row numbers

Fig. 1 Architecture of the NN vehicle
model on slope terrain
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Z, =(kaaVykswk99ka¢’k)T (2)

Sen = (VX ’Vymswm)r (3}

where: a; is the steering angle in °; Ag is the rate
of steering in °/s; Vx, is the forward velocity of
vehicle center of gravity in the vehicle frame in
m/s; Py is the lateral velocity of vehicle center of
gravity in the vehicle frame in m/s; 6, is the
heading angle in °; w is the yaw rate of center of
gravity in °/s ; g is the slope angle in °; and the
subscript £ means equally spaced time step (=1, 2,
3...n) in a discrete system. The output vector &,
represents the vehicle state after each 0.5 seconds.
The output is determined by both the current
inputs and their previous outputs. The sigmoid

transfer function of the model, as shown in the Eq.

(4), was used as the threshold function.

1
f(net) = —— (4)
I+e

Comparing with the previous model, the
reconstructed one was incorporated with incline
information (g), so it could be applicable for
different gradients not just for a particular gradient,
Although the inputs increased, the adjustable
weights and biases decreased from 105 to 99
instead. This lowered the probability of trapping in
a local optimum when the model was trained.

2. Data acquisition

Although

previous model could guide the tractor along

the controller derived from the
rectilinear path accurately, there was some problem
for following quarter-turns under close-loop control.
The main reason was the training set had not
covered ranges of every variable as wide as
possible. Here a lemniscate of Bernoulli path was
designed instead of sinusoidal path in the previous
model. The path (Fig. 2) was described by:
(x*+y*)* =2a°(x* - y?) (5)

in this paper, ¢=6.0. The centerline (X axis) is in
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Fig. 2 Lemniscate of Bernoulli path

paralle]l with the contour line, Y axis is towards the
uphill direction.

The training set acquired with this path could be
representative of a much large class of possible
input/output pairs. The steering angle could not turn
beyond roughly £40°, while the heading angle
could involve any angles. However, due to the limit
of the threshold function, any value beyond the
range [0, 1] could not be used in the NN model.
Therefore, all of the input/output variables were
normalized by following equation.

f(ﬂ)=/1+/1

max

24

max

3. Training of the NN model

A supervised training method, called BP algorithm,

(6)

together with GA were used to train the NN model.
The learning rule of BP is provided with a set of
examples (the training set) of proper network
behavior:
(Pt APy ot dPosto

where, pp is an input to the network and ¢ is the
corresponding correct (target) output. As the inputs
are applied to the network, the network outputs are
compared to the targets. The learning rule is then
used to adjust the weights and biases of the network
in order to move the network outputs closer to the
targets.

Although BP algorithm has strong ability for local
searching, it easily traps in a local optimum if the
multilayer network has many local minima (Hagan

et al, 1996). For this problem, GA offers a
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preferable means of solution. GA offers the
attraction that all parts of the feasible space are
potentially available for exploration, so the global
should be

convergence can be avoided (Chambers, 1995). On

minimum attained if premature
the other hand the GA is often slow for local
optimization. Therefore, a combination of GA and
BP algorithm was applied to train the NN model.
Fig. 3 shows the flowchart of the training procedure.
The GA procedure was composed of the steps in
the dashed rectangle.
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Fig. 3 Flowchart of training the NN vehicle
model

In order to prevent premature convergence,
keeping the population diversity, some measures
were taken. During selection, some individuals whose
fitness was better than the average fitness were
discarded and replaced with random numbers. And the
mutation rate was increased when the iteration
number increased.

The trajectories of mean squared errors are shown




in Fig. 4. After about 60,000 iterations, the changes
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Fig. 4 Trajectories of mean squared error

of the errors tended to be stable. Although the
error of the training set continued to decrease, that
of the test set had increased. So the weights
obtained at that time were selected as the final
result.
4. Model validation

To validate the NN model, the vehicle was
field the

experimental results were compared to simulations

operated  under conditions, and

using the NN model. In the simulation, since
steering angle was the only control-input, the
derivative (da) of the same steering angle recorded
during the data acquisition test was used as the
control input. Initial values of the simulation were
as same as those in the test, where the rest of the
values were calculated. For every step of
calculation, the output values were used as the
input values in the next step.

Another measure was also taken to further verify
the NN model, that is, to compare the open-loop
performance of the experiments and simulations.
They included rectilinear motions and circular
motions on sloped terrain.

During simulation, the slope angle and the
interval were initialized to the corresponding
averages of them in the test respectively. Other

variables were set only at the beginning of

simulation, and their values were as same as the

1000000

first data acquired in the field test.

I Experiment

1. The test tractor and instrumentation
The specification of the test tractor is shown in
Table 1. The equipment and sensors used in this

experiment are shown in Table 2.

Table 1 Specifications of the test tractor

Type Mitsubishi MT2501D
Length x Width [m] 2.71x1.31
Wheelbase [m] 1.595

Weight [kg] 1125

Rated Power [kW] 18

Drive Mode 4WD

Tire Type High lug

Table 2 Specification of instrumentation

DC motor Its power is 82W, being used for the
steering actuator.

1.0 GHz Pentium  The PC was mounted on the tractor, being

PC
Potentiometer

Magnetic sensor

Fiber optic
gyroscope (FOG)

used as the center processing unit,

It was fixed on the front axle and to
measure the steering angle.

It was fixed near the flywheel and to
measure the engine speed.

Its model is JG-35FD, being used to
measure the heading angle with range of
+180°. Its angular drift is less than £5°/10
min.

Total Station  With Leica TCA 1105 model, it has
- (TS) and prism 2mm positioning accuracy.

SS wireless  They transmit the signals of the tractor

modems position from the TS to the PC.

AD/DA board It converts the analogue signals to digital
(AD) and digital to analogue (DA).

Sprayer It Marks the vehicle locations by spraying
color ink.

Inclinometer With TCM-2X-90 model, it is used to

measure the roll and pitch,

2. Experimental conditions
Field tests on data acquisition and open-loop
control were conducted in November 2003 on a
meadow at the hilly areas of the Iwate University
Omyojin Research Farm. Average land inclination,
standard deviation and variance of the test course
9.96°, 1.57°, and 2.46°
Throughout the test the 0° heading angle was

were respectively.

always set to parallel with the contour line. The

tractor velocity was 0.5 m/s.




3. Experiment methods

(1) Data acquisition experiments

Data acquisition test of training pairs for the NN
model was conducted on the sloped meadow. A
skilled human operator operated the test tractor

along predetermined lemniscate of Bernoulli path,

which were traced on the ground by means of ropes.

All  information but wvehicle position was
continuously recorded in the control computer at
0.5 second regular intervals. The vehicle position
was marked by color ink, later measured by TS.

Except for lemniscate of Bernoulli path, a
sinusoidal path was also applied for data
acquisition. But the data obtained in this test were
only used for test set and to invalidate the NN
model.

(2) Model validation experiments

Two other types of field test were conducted with
the prototype tractor: rectilinear motion and
steady-state turn test.

Instead of human operator, a tractor mounted PC
and other equipment were used to operate the
tractor in the test. For each test the PC generated
the designed steering-actuation signals and
accordingly the DC motor rotated the steering
wheel.

IV Results and discussion
1. The NN model validation

A comparison between the actual and simulated
trajectories of vehicle motion along the lemniscate
of Bernoulli path on about 10° sloped terrain is
shown in Fig. 5 (a). From this figure, it is found
that these two trajectories are almost the same.
Figure 5 (b) shows that heading angles of
simulation and experiment were almost similar.

For checking the generalization of the developed
NN model, the test with sinusoidal path was also
performed on the same field. The trajectories of

experiment and simulation are shown in Fig. 6.
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Apparently the NN model could produce outputs
near from the true responses. So the NN model

generalized well.
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Fig. 5 Comparison of the motions of actual and
trained NN vehicle model
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Fig. 6 Trajectories along the sinusoidal path

2.

Fig. 7 shows the trajectories of the rectilinear

The characteristics of open-loop control

vehicle motion on 10°slope. In Fig. 7 (a), both the

experimental and the simulated case were

initialized with same conditions. Here the steering
angle was fixed at 0°, and the heading angle was

initialized to 0°. In Fig. 7 (b), the steering angle




was also fixed at 0°, but the heading angle was
initialized to -180°. These figures indicate that the
reconstructed NN model could represent the actual

vehicle motion on the slope.
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slope

Fig. 8 shows the trajectories of the anticlockwise
steady-state circular turn on sloped terrain, where
the average inclination was 10.4°, and varied in the
range of 7.2°~14.5°. The steering angle was fixed
at 30° throughout the test.
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Fig. 8 Trajectories of the steady-state circular turn
on 10.4°slope
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Fig. 9 Trajectories of the steady-state circular
turn on 9°slope

Fig. 9 shows the clockwise circular turn for the
same place, but at the bottom of the test field,
where the average slope inclination was 9°, and
varied in the range of 7.5°~ 10.4°. The steering
angle was fixed at -30°.

From above two figures, one important fact
becomes clear that in steady-state circular turn the
vehicle deviation on slope-land is not directly
downward, which was unintuitive prior to this test,
rather it will be towards the diagonal of the contour
line and downhill direction. The results show that
the deviation tendencies of being simulated with
this model are almost similar to those in the
experimental test.

It was noticed that there were slight errors at the
top and bottom of the test field. These were due to
variant slope angle on the field. At the top the
inclination was bigger than the average one, the
experimental deviation tended toward downhill
direction; On the contrary, at the bottom it was
smaller than the average one, the experimental

deviation tended to move towards uphill.

Conclusion
A model

formulated and trained by GA and BP algorithm.

reconstructed NN vehicle was
Data acquisition test with lemniscate of Bernoulli

path guaranteed that the NN model was accurate




over a wider range. The NN model was invalidated
with both training set (lemniscate of Bernoulli path)
and test set (sinusoidal path), The results show the
NN model is available and generalized well. From
the comparative study of the experimental and
simulation vehicle motion it is clear that NN model
was sufficient enough to represent the input-output
relationship of the vehicle motion on slope-land
environment. The open-loop characteristics of
terrain were also

the

vehicle motion on sloped

investigated. All of them indicate that
reconstructed model could represent the actual

vehicle motion on slope.
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