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1 Introduction However, only some simulation studies were
presented to demonstrate the capability of the
mobile robot to reach the goal safely while

Accurate vehicle gui tem i ired . A )
b AINE G RS b o avoiding impassable terrains.

for some precision agriculture operations. 3
Many researches on this domain were This paper presents the development of a

investigated for the last two decades (Torii, two-hierarchy fuzzy logic controller (FLC). The

: : : : upper level controller utilized the terrain slope
gggg' ﬁ?;%merzgmsfumn’ 2000; Reid ef.al. and the posture variable derived from the pitch

and roll of vehicle to determine the types of
procedures; whereas the lower level controller
used the offset error and the orientation errors
to obtain the optimum steering angle change
for autonomous navigation. The fuzzy rules
were extracted by optimization with genetic
algorithm (GA) based on the neural network
(NN) vehicle model. In addition, the path
tracking method was specified. Field tests were
performed to validate the developed fuzzy

In Japan most grass lands are located in hilly
areas, where agriculture mobile robots perform
various tasks. Due to variations in ground
surface profiles, tire-ground friction forces,
slope variations, etc, conventional control
technologies, e.g. PID control, have limitations
in guiding vehicles under such conditions. On
the other hand, fuzzy logic has claimed
significant promises in situations where the
status is imprecise and uncertain and the

merely crisp control reaches its limit (Decreton, controller.
2003). .
In recent years, more and more works were II Fuzzy controller design

devoted to fuzzy logic approaches for
autonomous vehicle navigation. Numerous 1. Path tracking method
applications on fuzzy logic based vehicle .

guidance have been reported (Saffiotti, 1995; A navigation map (Noguchi et al., 2002) was
Leyden et al., 1999; Toda et al., 1999 used for autonomous guidance. This map

Thongchai et al., 2000; Qiu et al., 2001; Kim et _consists of a series of navig:ation points, which
al., 2002: Vellasco et al., 2003; Castro et al., include the I‘atitude and longitude based on the
2003). But most of them were for flat ground. world coordinate system, and the curvature of
Seraji (2000) proposed a new concept, i.e., tracking path at these points. The navigation

fuzzy traversability index, for terrain-based ~ MaP can be derived by path recording or

i - 7 i ith observation.
navigation, which guided the robot toward the manually coding wi .
safest and the most traversable terrain. Before developing the path-tracking methods,
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three coordinate systems must first be defined,
as shown in Figure. First, the world coordinate
system is defined where the x-axis is along the
contour line on the slope, the y-axis points
uphill and the z-axis is defined to form a right
hand coordinate system. The origin of the
world coordinate system o is determined at the
location of Total Station.

The vehicle coordinate system is defined
where the x-axis is in the forward direction of
the vehicle, the y-axis is laterally out the left
side of the vehicle and the z-axis is defined to
form a right hand coordinate system. The origin
of the vehicle coordinate system o, is defined
at the center of gravity of the vehicle, which
also serves as control point in autonomous
navigation.

Finally, a moving coordinate system is defined
where the origin o, is a waypoint (or navigation
point) on the planned path. It supposes that P,
is the closest waypoints away from current
vehicle position, i.e., the control point o,, and
the origin o, is defined at P;. The coordinates of
the point o, in the moving frame are X, and Yo,
whereas those of Py are Xpis and ypir.
Which waypoint will be selected as the origin o,
is subject to following rules:

The waypoint P, will be selected as the origin
o, except for the below two conditions, namely,

if x x,,, <, then P, will be selected as

rpi+l T
the origin o, if x,,, <-/, then P, will be

selected.

Where, / is the look-ahead distance, which
was determined by the experiment.

The x-axis of the moving coordinate system is
oriented in the direction from the origin o, to the
next waypoint, the z-axis is upward with
respect to the sloping ground and the y-axis is
defined to form a right hand coordinate system.

The lateral deviation Ay and the orientation
error A8 of the vehicle are measured based the
moving coordinate system. The

A
¥

Figure 1. Defined coordinate systems

lateral deviation is the y-coordinate of the
control point, and the orientation error is
defined as the angle between the current
vehicle orientation and the x-axis of the moving
coordinate system. The vehicle steering angle
is then controlled such that the lateral deviation
and orientation error are kept as small as
possible. A zero lateral deviation and zero
orientation error mean that the vehicle passes
the navigation point with the same orientation
as that of planned trajectory at this waypoint.
The designed path tracking method is
different from common geometric path-tracking
methods, such as follow-the-carrot or pure
pursuit, which do not use the orientation at the
navigation points. Both the location and
orientation of the navigation points are
employed to determine the current steering
angle for vehicle motion. In terms of this
path-tracking method, the steering angle is
determined with two portions. One part, ap, Iin
degree, bases on the orientation of the
navigation point, which can be obtained from
geometry of the vehicle bicycle model (Figure
2). The ay is calculated to be:

180 ! L (1
a, =——1an

x [ i
¢! I

where L is the wheelbase; L, is the distance
between COG (center of gravity) and center of
rear axle; ¢ is the path curvature at current
navigation point. The other part Aa is the
steering angle change evaluated by
autonomous navigation controller, i.e., the
fuzzy controller in this work. Therefore, the
desired steering angle, a, was computed as
follows,

a=a, +Aa 2)

2. Architecture of fuzzy controller

A fuzzy system is a static nonlinear mapping
between its inputs and outputs (Passino &
Figure 3

Uurkovich, shows a

P

1997).

Il

Figure 2. Geometry of vehicle bicycle
model
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Figure 3. Typical fuzzy system

typical fuzzy system. The inputs and outputs
are “crisp—that is, they are real numbers, not
fuzzy sets. The fuzzification block converts the
crisp inputs to fuzzy set, the inference
mechanism used the fuzzy rules in the
rule-base to produce fuzzy conclusions (e.g.,
the implied fuzzy sets), and the defuzzification
block converts these fuzzy conclusions into the
crisp outputs.

In this work, a two-hierarchy fuzzy controller
was designed, as shown in Figure 4. This fuzzy
controller adopts multi-layer architecture to
organize the rule sets. Therefore, every
sub-rule set has a relevant simple structure,
and can be designed easily. The upper level
fuzzy controller, according to high-layer rule set,
selects the low level controllers. Then the crisp
outputs of every low level controller are inferred
based on each rule set. Finally these outputs
are coordinated to produce the resultant
steering angle change desired for vehicle
motion.

3. Design of fuzzy controller

3.1 Linguistic variables and Fuzzy sets

There are four linguistic variables as inputs to
the fuzzy control system:

(1) Terrain slope, @, in degree, which is
calculated with the pitch (%) and roll (@) of
vehicle by Equation (3). The universe of
discourse of ¢ is between 0 and 20 degrees.
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Figure 4. Two-hierarchy fuzzy controller

w:%--l--s—q tan cos;afcns;f (3)
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The terrain slope ¢ is represented by three
fuzzy sets {FLAT, SLOPED, STEEP}, with the
user-defined trapezoidal membership functions
shown in Figure 5(a), where the abscissa ¢ is
the magnitude of the terrain slope and the
ordinate u(¢p) is the degree of membership.

(2) The vehicle posture B, in degree, which
denotes the direction of vehicle's centerline
with respect to a predetermined contour line on
sloped terrain, and has a value between -180
and 180 degrees. The B is derived from current
pitch and roll of vehicle, defined as follows:

p=ilph- G081 (4)
T siny cos ¢

B values of -90, 0, 90, 180 degrees imply that
the vehicle is parallel to contour line (CL),
upward (UW), inverted contour line (ICL), and
downward (DW), respectively.

The variable B was divided into four fuzzy sets
{CL, UW, ICL, DW}. The membership functions
of these sets are user-defined trapezoids
depicted in Figure 5(b).

(3) Lateral deviation, Ay, in centimeter, is the
offset from the control point to the desired path.
The lateral deviation Ay is expressed by seven
fuzzy sets {NL, NM, NS, ZE, PS, PM, PL}, with
the user-defined triangular and trapezoidal
membership functions shown in Figure 5(c).

(4) Orientation error, A8, in degrees, which
has a value between -180 and 180 degrees. A
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Figure 5. (a) Men‘ibership function for terrain
slope @. (b) Membership function for vehicle
posture B.
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Figure 5. (c) Membership function for lateral
deviation Ay. (d) Membership function for
orientation error, AB8. (e) Membership function
for rule set R. (f) Membership function for
steering angle change Aa.

three-level decomposition is wused on
orientation error A8, with the fuzzy sets {NL,
NM, NS, ZE, PS, PM, PL}). The membership
functions of these sets are user-defined
triangles and trapezoids shown in Figure 5(d).

The output of the upper level fuzzy controller
is represented by linguistic variable R, which
denotes the numbers of activated rule sets in
low level rule-base. Singleton fuzzification is
applied to variable R, which produces fuzzy
sets {O1, 02, O3, 04, 05, 06, O7, 08, 09}.
Figure 5(e) shows the singleton membership

function of these sets.

Similarly, the steering angle change Aa, in
degrees, is the linguistic variable of the output
of the low level fuzzy controller, having a value
between -38 (maximum steering angle on right)
and 38 degrees (maximum steering angle on
left). The steering angle change Aa has the
fuzzy sets { Ei;i=-10,-9,--.,10 }, with the
user-defined triangular membership functions
depicted in Figure 5(f).

3.2 Rule sets

The rule set R is determined by a set of fuzzy
relations in terms of the terrain slope ¢ and the
vehicle posture 8. With three qualitative levels
for terrain slope and four levels for vehicle
posture, 12 IF-THEN rules are needed to cover
all the possible combinations of variables. The
rules in Table 1 were designed based on
commeon-sense criteria.

A fuzzy rule set for steering angle change
can be represented by a set of 49 simple fuzzy
rules as depicted in Table 2 (for terrain slope is
SLOPED, vehicle posture is CL), of the form
such as:

IF lateral deviation is NM and orientation
error is NS THEN steering angle change is E-7.
GA as an optimization tool was used to capture
the expert's knowledge, namely fuzzy rules,
based on the vehicle NN model, which was
formulated by Zhu et al. (2003).

3.3 Inference and defuzzification
A fuzzy inference engine with the MAX-MIN

Table 1. Rule base for upper-level fuzzy
controller

B
R
cL Uw | 1IcL + DW
FLAT o1 o1 01 o1
¢ | SLOPED (o)) 03 04 05
STEEP o R 1 08 09
Table 2. Rule base for low-level fuzzy
controller
A
Aa 4
NL |NM | NS | ZE | PS | PM | PL
NL || E-10 |E9 | E-7 | E-7 | E6 | E-5 | Ef
NM | E9 |E7| E6 | E5 | E4 | E2 | E6
NS | E8 |E-6| E2 | E1| E1 | ES | E7
A8 | ze | E7 |E5| E1 | E1 | E2 | E6 | EB
ps | E7 |E3| E1 | E2 | E4 | E7 | E9
PM || E5 | E1 | E4 | E6 | E7 | E8 | E9
PL || E1 |E6 | E7T | EB | E9 | E9 | E10




inference method was employed to fire the
appropriate fuzzy rules being relevant to the
current situation, where the minimum operator
is used in the IF part of each rule to compute
the degree of truth of the antecedent, while
maximum operator is used in the THEN part of
rules to determine the degrees of truth of each
linguistic term of the output linguistic variable.
The connective "and”" has been implemented
using also the MIN operator. As an example,
suppose that the input sensor values result in
the following pertinence (u(x)) for the input
fuzzy sets: psioren(9)=1.0;  peu( £)=1.0;
e (Ay)=1.0; pze(A #)=0.4; pps(A ¢)=0.6. Using
the Table 1, we find that only the rule set O2 is
fired. In terms of fuzzy rules listed in Table 2,
the rules that are on are the following:

RULE 1: IF lateral deviation is NL and
orientation error is ZE THEN steering angle
change is E-7;

RULE 2: IF lateral deviation is NL and
orientation error is PS THEN steering angle
change is E-7,

The aggregations of the RULEs are computed
by:

RULE 1: Min(1.0, 0.4)=0.4;

RULE 2: Min(1.0, 0.6)=0.6;

Then the composition of the rules is calculated
by:

Max(0.4, 0.6)=0.86.

Thus, the resulting degrees of truth for the
linguistic term E-7 for steering angle change is
measured with pertinence to 0.6.

The defuzzification process converts the fuzzy
set information produced by the inference
process (i.e., the implied fuzzy sets) into
numeric fuzzy controller output. Center of Area
(COA) was used as defuzzification method in
this work to get the desired steering angle
change in low level fuzzy controller. For this
method, the crisp output was calculated by:

z l”A (ﬂa‘ ]AQI
i=l

(5)

Aa=

Where, n is the number of fired rules; Aa; is the
fth domain value; and p(Aa) is the truth
membership value for that domain point.

Il Experiment

1. Mobile robot platform

In this experiment a Mitsubishi MT2501D
model tractor was modified and served as a
mobile robot to follow the target path
automatically. A DC motor was added to

actuate the steering wheel when a turning
command was ftriggered. A PC with
autonomous guidance system program was
installed on the mobile robot. A Leica TCA1105
Total Station (TS) was used for positioning. A
gyro provides a relative measure of the altitude
of the vehicle. The equipment and sensors
used in this experiment are shown in Table 3.

2. Experimental conditions

Field tests on path tracking were conducted in
April 2004 on a meadow at the hilly areas of the
Iwate University Omyojin Research Farm. The
field surface was covered with grass and the
soil was slightly moist. Average and standard
deviation of terrain slope of the field were 10.9°
and 3.0°, respectively. At the foot of the field,
the terrain slope was about 9°, whereas on the
top of the field it was over 14°.

Throughout the test the 0° heading angle was
always set parallel with the contour line. The
traveling speed was set constant at 0.5 m/s.

However, the comparative tests were
performed on asphalt road in lwate University
campus.

IV Results and discussion

1. Comparison with the controller based

lookup table

The developed fuzzy controller was
compared with the lookup table controller
designed by Torisu et al. (2002). For this
purpose, two kinds of tests were performed to
evaluate path tracking performance. One is
straight path following test; the other is step
response. The former measured the accuracy
of trackers, by examining how close the tracker
stays to predetermined path. Figure 6 shows

Table 3 Specification of instrumentation

Name Function
DC motor Power is B2W, used for the steering
actuator,
1.0 GHz Pentium  Mounted on the tractor, used as the

PG
Potentiometer

center processing unit.

Fixed on the front axle, measured the
steering angle.

Fixed near the flywheel, measured the
engine speed.

Model is JG-35FD, used to measure the
heading angle with range of £180°
angular drift is less than £1.5%h.

Leica TCA1105 model, 2mm positioning

Magnetic sensor

Fiber optic
gyroscope (FOG)

Total Station (TS)

and prism accuracy.

S8 wireless Transmit the signals of the tractor

modems position from the TS to the PC.

AD/DA board Converts the analogue signals to digital
(AD) and digital to analogue (DA).

Inclinometer TCM-2X-90 model, measured the roll

and pitch.
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Figure 6. Trajectories of straight line tracking
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the trajectories of following the same rectilinear
path by two trackers. The mean and standard
deviation in tracking straight path by the fuzzy
controller were 0.000 m and 0.024 m,
respectively, whereas that by the controller
based lookup table were -0.032 m and 0.027 m,
respectively. The results implied that both
controllers had almost the same ftracking
accuracy when traveling a straight path on flat
ground. Controller’s response to step change
can be used to measure the controller's settling
time and stability. In this test the offset was
initialized to about 2 m. The time histories of
tracking error were depicted in Figure 7. Either
controller obviously converged to 0 tracking
error after some oscillation. But the fuzzy
controller has shorter settling time (20.1 s vs.
30.8 s) and smaller overshoot (10.7% vs.
48.7%) than its counterpart.

2, Rectangular path control

The travel course is composed of four straight
paths, namely path /, /=1, 2, 3, 4, and four
curved paths, namely quarter turn i, i=1, 2, 3, 4.
The terrain slope was varied according to each
path, with average 9.4° for path 1, and 14.0° for
path 3, and a value between these two for
other paths. Both straight paths and curved
paths were followed by the mobile robot with
feedback fuzzy control. The autonomous
traveling trajectories are expressed in Figure 8.
Table 4 lists the mean lateral deviation and
standard deviation of each straight path.
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Figure 8. Autonomous traveling trajectories
along rectangular path on sloped terrain

Table 4. Autonomous traveling performances for the
rectilinear motions of rectangular path

Offset error Orientation error
P MeanSTORV ™ pean 1. STOEV )
Path 1 -0.003 0.082 1.14 334
Path 2 0.012 0.024 1.19 1.44
Path 3 0.007 0.040 -2.35 2.27
Path 4 -0.015 0.034 497 2.87
Average 0.000 0.040 1.24 2.48

STDEVY: Standard deviation.

The average of the mean and standard
deviation of the lateral deviation for the four
rectilinear motions were only 0.000m and
0.040m, respectively; and that of the
orientation errors werel1.24° and 2.48°,
respectively. The distribution of the tracking
error over all straight segments was also
shown in Figure 9. There is 96.4% of the
tracking error falling below 10 cm. It is seen
that such level of tracking error is quite
agreeable with agriculture operation on grass
land. Table 5 lists the offset errors and
orientation errors at the completion of every
turning path. Under about 7 cm max lateral
error and about 5° average orientation error
allowed the robot to travel to the next working
path smoothly. Overall average tracking error is

0.25

02

Percent

-03 -02-0.2 -0.1-01 0 005 01 015 0.2 0.25
Tracking error [m]

Figure 9. Histogram of tracking errors for

straight path



Table 5. Lateral errors at the completion of turning path

N dowenipwge YhOR SRtk
Quarter turn 1 0.002 2.09
Quarter turn 2 0.067 -10.70
Quarter turn 3 -0.051 -3.19
Quarter turn 4 0.070 -6.59
Average 0.022 -4.60

0.043 m, with standard deviation of 0.099 m.
3. Sigmoid path tracking

In order to measure the tracking performance
of the controller for responding to variant
curvature path, the test along sigmoid path was
executed. Figure10 shows the desired and
actual autonomous traveling trajectories, It was
found that the mean and standard deviation of
tracking error were -0.022 m and 0.069 m,
respectively; and that of orientation error were
0.47° and 4.49° , respectively. It is seen that
the test was successfully completed with the
robot following the path precisely.

V Conclusion

A two-hierarchy fuzzy controller was designed
for mobile robot autonomous guidance on
grass lands. It provided an available approach
to realize controlling the robot along a
predetermined path, including straight path and
curved path.

The path tracking method employed in this
work successfully guided the mobile robot
along desired path, such as rectangular and
sigmoid path, despite of variations in terrain
slope, undulant ground and variant path
curvature

Optimal control was incorporated into the
fuzzy controller since steering angle change in
rule-base was acquired by GA. Therefore, the
controller is entitled with not only human
intuitive understanding of how to best control
the process, but also with the capability of
optimum inference.

Compared with previously designed controller
based lookup table, the fuzzy controller had
shorter settling time and better performance.

Field test results indicated that the fuzzy
controller tracked straight path precisely, with
the mean and standard deviation were 0.000m
and 0.040 m, respectively, and with 96.4% of
the tracking error falling below 10 cm. For the
curved paths, the max lateral deviation and the
average orientation error were less than 7 cm
and 5" respectively at the completion of these
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Figure 10. Autonomous traveling trajectories
along sigmoid path on sloped terrain

paths.

References

Alessandro Saffiotti. 1995. Chapter G6.1
“Autonomous Robot Navigation” in the
Handbook of Fuzzy Computation, E.
Ruspini, P. Bonossone and W. Pedrycz,
Eds. Oxford Univ. Press and |OP Press,

1998.
Homayoun Seraji. 2000. Fuzzy Traversability
Index: A New Concept for

Terrain-Based Navigation. Journal of
robotic Systems 17 (2): 75-91.

H. Qiu, Q. Zhang and J.F. Reid. 2001. Fuzzy
Control of Electrohydraulic Steering

Systems for Agricultual Vehicles.
Transactions of the ASAE Vol. 44 (6):
1397-1402.

J.N. Wilson. 2000. Guidance of agricultural
vehicles — a historical perspective.
Computers and  Electronics in
Agriculture 25 (2000): 3-9

John F. Reid, Qin Zhang, Noboru Noguchi and
Monte Dickson. 2000. Agricultural
automatic guidance research in North
America. Computers and Electronics in
Agriculture 25 (2000): 1565-167.

Jong-Soo Kim, Seong-Joo Kim and Hong-tae
Jeon. 2002. Intelligent Trace Algorithm
of Mobile Robot Using Fuzzy Logic.
Available at: www.kmutt.ac.th/itc2002.
Accessed 3 May 2004

Kevin M. Passino and Stephen Yurkovich.
1997. Fuzzy control. Menlo Park, CA:
Addison Wesley Longman, Inc.

M. Toda, O. Kitani, T. Okamoto and T. Torii.
1999. Navigation Method for a Mobile
Robot via Sonar-based Crop Row



Mapping and Fuzzy Logic Control. J.
Agric. Engng Res, 72, 299-309.

Marc Decreton. 2003. Book review. Fuzzy sets
and System 134 (2003): 205-207.

Mark Leyden, Daniel Toal and Colin Flanagan.
1999. A fuzzy Logic Based Navigation
System for a Mobile Robot. Available
at: www.ul.ie/~toald/Publications.
Accessed 3 May 2004.

Marley Maria B.R. Vellasco, Marco Aurélio C.
Pacheco and Ivo Lima Brasil Jr. 2003.
Available at:
www.ica.ele.puc-rio.br/publicacoes,
Accessed 3 May 2004,

N. Noguchi, M. Kise, K. Ishii and H. Terao.
2002. Field Automation Using Robot
Tractor. In Proceedings of the July
26-27, 2002 Conference on
Automation Technology for Off-Road
Equipment, ed. Qin zhang, Chicago,
lllinois, USA. ASAS, pp. 239-245.

Nuno de Castro, Rodrigo Matias and1 M.
Isabel Ribeiro. 2003. Target Tracking
Using Fuzzy Control. Actas do
Encontro Cientifico 3°Festival Nacional
de Roboética- ROBOTICA 2003 Lisboa,
9 de Maio de 2003,

R. Keicher and H. Seufert. 2000. Computers
and Electronics in Agriculture, 25
(2000): 169-194,

Ryo Torisu, Shen Hai, Jun-ichi Takeda,
Muhammad  Ali  Ashraf.  2002.
Automatic Tractor Guidance on Slope
Terrain (Path 1) — Formulation of NN
Vehicle Model and Design of Control
Law for Centour Line Travel. Journal of
JSAM 64 (6): 88-95.

S. Thongchai, S. Suksakulchai, D.M. Wilkes
and N. Sarkar. 2000. Sonar
Behavior-Based Fuzzy Control for a
Mobile Robot. Proceedings of the IEEE
International Conference on Systems,
Man, and Cybernetics, Nashville,
Tennessee, October 8-11, 2000.

Toru Torii. 2000. Research in autonomous
agriculture  vehicle in  Japan.
Computers and Electronics in
Agriculture 25 (2000): 133-153.

Zhong-xiang Zhu, Ryo Torisu and Jun-ichi
Takeda. 2003. Reconstruction of
Neural Network Vehicle Model on
Sloped Terrain. Proeedings of 213"

lecture meeting of Tohoku Chapter,
The Society of Instrument and

Control Engineers. Tohoku University,
Dec. 12, 2003.



