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Abstract
A ncjw design method of robust control Where Pls) = Cls) 2)
system is proposed on the basis of a kind of 1+C(s)G(s)

maodified internal model control framework.
The paper also shows how to extend the
relative stability and the derivation of
conventional PID controller from correlative

internal model controller.

1. Introduction
The conventional feedback control system
is shown in figure 1, where G is the process

and C is the controller.
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Figure 1 Feedback control
P(s)

Cls) = ——o
1-G(s)P(s)

If the process G is stable, then the
feedback system in figure 1 is equivalent
transform to internal model control (IMC)
The

conventional controller C is given by (1)

which is  shown in figure 2.
and (2) which imply that the conventional
PID controller can be derived from the

correlative IMC controller.
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Figure 2 IMC framework

The transfer function fromr to y is

Y



Y = G(s)Ps) 3)
»

The sensitivity function and the
complementary sensitivity function are
given by

S(s)=1-G(s)P(s) @
T(s) =G(s)P(s)

Where P(s) =G (s)f(s) (5)

The filter f(s) makes the controller
proper and causal.

Then 2= f(s) (6)
»
S(s)=1-f(s)
4 (7)
T(s) =/ (s)

Therefore, the control system can be
designed through adjustment of the filter.
However, we hope that we can design the
controller without considering the filter to
make the design easier.

Since the sensitivity function and the
complementary sensitivity function appear
linear in the IMC system, this implies that
the internal model control provides a much
easier framework for the design of robust
controller.

For these reasons, we present a new
design method of robust control system on
the basis of the internal model control
philosophy and PID controller will be

achieved by rearrangement of the structure.

2. Robust Design of Error-
compensated IMC

2.1 robust stability of conventional IMC
In robust control system, the process can

be denoted by
G(s) = G(s)(1+ Als)) (8)

It is assumed that G(s) does not contain

unstable poles or zeros, 1+ Als) is stable

and is given by |&(S)| =1 (9)
The transfer function becomes to
vy Gl)Ps)1+Als))
r 14GE)PE)1+As) 1)
_G)Pls)L+As) (10)
1+G(s)P(s)Als)

The necessary and sufficient condition for
robust stability is that G(s)P(s)A(s) does
not encircle the point(-1,0).
the bound of model

Therefore, error

should be less than unity.
|AGs)| =1

2.2 definitions of Error-compensated IMC

process G
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Figure 3 Error-compensated IMC
To break through this restriction on robust
stability, an error-compensator M is added in
figure 3. Assume that P is the transfer
that
Also

function of a controller achieves

nominal internal stability. assume

thatG , G and process model G have the

same number of unstable poles. In error-
compensated IMC, assume multiplicative
uncertainty is less than unity, therefore the

model error can be greater than unity.
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Figure 4 Af(s) in error-compensated IMC




G(s) = Gs)(1+Als))

G (s) = G(s)M (s)

The transfer function of the
Error-compensated IMC system is given by
y G(s)P(s)(1+ Als)) (n

r 1+ G)P() 1+ Als) =M (s))
2.3 robust stability of Error-compensated

IMC
Theorem: the

In error-compensated IMC

sysiem, assume ‘1 + Als) - M(S]l <4

1 |G($)P(s)] 5:]5-

Then, the system is robust stable.
Since (5) and (11)
vy f+AG)
roo 1+ f(s)(T+ Als) - M (s))
Notice that the dominator of (12) is

1+ f(s)1+Als) + M (s))

If the system is stable, it is necessary and

(12)

sufficient that Nyquist plot of
S0+ Als) =M (s))

not encircle the point (-1,0).

Since f(s):———l— Y (A=20)
1+ As)"

Then |/ (s)| =1 (13)

therefore, if‘l+ Als) -—M(S)l <1 (14)

then |/ (s)(1+A(s) =M ()| <1 (15)

the vector does not encircle the point (-1,0),
and the Error-compensated IMC system is
robust stable.

For this reason, the filter can be designed
arbitrarily to improve the performance of the
system if we design the controller satisfying
(14). In fact, Error-compensated IMC is

designed on the basis of this idea.

2.4 work example
Assume

(16)

< <
1+ AG) = b O=rsS
L>0

(1+—s5)7
Y

Since the phase lag increases with the order of
the process. In practice, we assume the order
of it less than five to guarantee the stability.

If the error-compensator is given by
1
1+Ls
then we can prove that the system is stable.
both the

uncertainty

M (s) (17)

Notice that magnitude of

(16)

error-compensator (17) are less than unity.

multiplicative and the
Furthermore, both of them decrease with
increasing of frequency. These imply that M
not only can be regarded as the compensator

of the phase lag but the magnitude.

To illustrate the idea, consider the
following example,
1
G(s) = 1+Als) = —————
s+1 (1+0.2s)
the parameter of compensator L=1
1
M(s) =
1+s
Step Response
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Figure 5 Step response

3. Extension of Relative Stability
by Improved Error-compensated
IMC

In particular, it is usually describe the



relative stability by the distance from the
nominal open-loop frequency response to the
critical stability point (-1,0). This implies
that the relative stability can be extended by

decreasing il +A(s) M (s)].

For this reason, it is better to make the
error-compensator more approach to the
multiplicative uncertainty for extension of

the relative stability margin, because of the
decreasing of|1 +Als)—M (S)i .
Assume that improved error-compensator

M(s) =

z l LFI Sn

n!

(18)

where L is equal to the time delay of the

multiplicative uncertainty.

Proof
Since the model error usually is time

delay element which can be described as:

& 1

e —

1+ %5}%2 Hrerenet—@'s"

If we set L =6, then the value of L is
equal to the time delay of the multiplicative
uncertainty which means

ZM (s) = 2(1 + Als))
Furthermore, according to the assumption
(16) and (18)

L+ AG)] <1 and M ()1

then 1+ Als) M (s)| <1
Therefore the system is robust stable.
Figure6 shows [hatll + Als) —M (S)l

decreases with increasing the order of the
error-compensator in the range of high

frequency. However, when the order of the

error-compensator is greater than 1, there is

not much difference among them.
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Figure 6|1 + A(s) — M ()| with different order

1 | ]
U.&-
2 —order
(1 . 4
i A '
™
04 /‘5 LAY, :
oz} 4 L S
Y% 3 0 i6 20

Figure 7 |1 +Als)-M (S)\ of 2-order

Figure 7 shows that the magnitude of
2-roder is a better choice in the range of low
frequency. Furthermore, since the 2-order
always is less than the l-order in all the range
of frequency, it means that if the 1-order
error-compensated IMC system is table, then,
the 2-order compensator system is stable too.
Therefore usually we select n=2 for the

error-compensator.

1
Thus M (s) = ] (20)
1+ Ls +—Ls*
2
Consider the work example
1
Gls) = 1+Ag) =——
s+1 (1+0.25)

formula (20) causes that
1
1+1.1s 4+ 0.605s

M (s) =



Table 1 Comparison of the relative stability

and ISE  of the IMC, EC-IMC
(error-compensated IMC) and IEC-IMC
(improved error-compensated IMC)
IMC EC-IMC | IEC-IMC
Gm 1.2972 1.2682 2.0239
Pm 16.7683 23.2253 -150
Weg 1.6248 3.1790 3.4922
Wep 1.4643 2.8675 ]
ISE 1.372 0.7295 0.778
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Figure 8 Nyquist Diagram
Gm: gain margin; Pm: phase margin; Weg: the
Srequency at which the magnitude is OdB; Wep:
the frequency at which the phase is —180°
Figure 8 shows that the stability margin of
IEC-IMC is larger than IMC and EC-IMC,

therefore, relative stability has been
extended.
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Figure 9 step response
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4. Implementing conventional PID
controller

PID controllers are widely used in the
industry due to their simplicity and ease of
re-tuning online. The Error-compensated
IMC philosophy can also be used to derive
the conventional Pl or PID controllers. The
dotted diagram in figurel0 can be reduced to
a conventional PID controller by rearranging

the framework.
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PID controller C

Figure 10 Rearrangement of EC-IMC to PID
controller

Consider the transfer function of process

Gls)= k
1+
PID controller Cls) = P(s)
1-P(s)G(s)M (s)
where
M (s) = !
1+ Ls
therefore
1 1+m
Cls) = 1+4s k
- 1 1
1+ As 1+ Ls
+w 1+ Ls
ks List+(L+A)s
Hence, the error-compensated IMC
controller has been converted into PI
controller with a filter
ks

Ls+1
Lis*+(L+A)s




5. Conclusions

The paper has presented a robust
controller design method which called
error-compensated IMC, By employing the
algorithm from internal model control, an
error-compensator has been introduced to
the process model and then yielded the
robust IMC controller parameter. The design
method which has been proposed can be
used to extend the margin of relative
stability. Furthermore, the parameter of the
robust filter can be designed arbitrarily to
improve the performance of the system.

The most important feature of the
error-compensated IMC is that it is able to
be converted into PID controller parameter.
This characteristic can make the design
method  easier to apply in practice

applications.
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